Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 9 tập 1 của giaitoan.edu.vn. Ở bài viết này, chúng tôi sẽ cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong mục 2 trang 16 và 17 sách giáo khoa Toán 9 tập 1 - Cánh diều.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, rèn luyện kỹ năng giải toán và đạt kết quả tốt nhất trong học tập.
Hai bạn Dũng, Huy vào siêu thị mua vở và bút bi để ủng hộ các bạn học sinh vùng lũ lụt. Bạn Dũng mua 5 quyển vở và 3 chiếc bút bi với tổng số tiền phải trả là 39 000 đồng. Bạn Huy mua 6 quyển vở và 2 chiếc bút bi với tổng số tiền phải trả là 42 000 đồng. Giả sử giá của mỗi quyển vở là (x) đồng (left( {x > 0} right)), giá của mỗi chiếc bút bi là (y) đồng (left( {y > 0} right)). a. Viết hai phương trình bậc nhất hai ẩn (x,y) lần lượt biểu thị tổng số tiền phải trả của bạn Dũng, bạn
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 3 trang 16 SGK Toán 9 Cánh diều
Hai bạn Dũng, Huy vào siêu thị mua vở và bút bi để ủng hộ các bạn học sinh vùng lũ lụt. Bạn Dũng mua 5 quyển vở và 3 chiếc bút bi với tổng số tiền phải trả là 39 000 đồng. Bạn Huy mua 6 quyển vở và 2 chiếc bút bi với tổng số tiền phải trả là 42 000 đồng. Giả sử giá của mỗi quyển vở là \(x\) đồng \(\left( {x > 0} \right)\), giá của mỗi chiếc bút bi là \(y\) đồng \(\left( {y > 0} \right)\).
a. Viết hai phương trình bậc nhất hai ẩn \(x,y\) lần lượt biểu thị tổng số tiền phải trả của bạn Dũng, bạn Huy.
b. Cặp số \(\left( {x;y} \right) = \left( {6\,\,000;3\,\,000} \right)\) có phải là nghiệm của từng phương trình bậc nhất đó hay không? Vì sao?
Phương pháp giải:
+ Tìm mối liên hệ giữa vật phẩm mua và \(x;y\);
+ Thay cặp số \(\left( {x;y} \right) = \left( {6\,\,000;\,3\,\,000} \right)\) vào từng phương trình để đối chiếu nghiệm.
Lời giải chi tiết:
a.
+ Bạn Dũng phải trả số tiền cho 5 quyển vở là: \(5x\) (đồng);
+ Bạn Dũng phải trả số tiền cho 3 chiếc bút bi là: \(3y\) (đồng);
Suy ra Số tiền bạn Dũng phải trả là: \(5x + 3y = 39000\).
+ Bạn Huy phải trả số tiền cho 6 quyển vở là: \(6x\) (đồng);
+ Bạn Huy phải trả số tiền cho 2 chiếc bút bi là: \(2y\) (đồng);
Suy ra Số tiền bạn Huy phải trả là: \(6x + 2y = 42000\).
b.
+ Thay cặp số \(\left( {x;y} \right) = \left( {6000;3000} \right)\) vào phương trình \(5x + y = 39000\) ta được:
\(\begin{array}{l}5.6000 + 3.3000 = 39000\\30000 + 9000 = 39000\end{array}\)
\(39000 = 39000\) (luôn đúng).
Vậy cặp số \(\left( {x;y} \right) = \left( {6000;3000} \right)\) là nghiệm của phương trình \(5x + y = 39000\).
+ Thay cặp số \(\left( {x;y} \right) = \left( {6000;3000} \right)\) vào phương trình \(6x + 2y = 42000\) ta được:
\(\begin{array}{l}6.6000 + 2.3000 = 42000\\36000 + 6000 = 42000\end{array}\)
\(42000 = 42000\) (luôn đúng).
Vậy cặp số \(\left( {x;y} \right) = \left( {6000;3000} \right)\) là nghiệm của phương trình \(6x + 2y = 42000\).
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 3 trang 16 SGK Toán 9 Cánh diều
Cho ví dụ về hệ phương trình hai ẩn.
Phương pháp giải:
Dựa vào khái niệm hệ phương trình bậc nhất hai ẩn để lấy ví dụ.
Lời giải chi tiết:
\(\left\{ \begin{array}{l}2x + y = 1\\ - x + 4y = 5\end{array} \right.\)
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 4 trang 17 SGK Toán 9 Cánh diều
Cho hệ phương trình: \(\left\{ \begin{array}{l}2x - 5y = - 2\\x + y = 6\end{array} \right.\).
Kiểm tra xem cặp số nào sau đây là nghiệm của phương trình đã cho:
a. \(\left( {3;3} \right)\);
b. \(\left( {4;2} \right)\).
Phương pháp giải:
Thay nghiệm vào hệ phương trình để kiểm tra.
Lời giải chi tiết:
a. Thay giá trị \(x = 3;y = 3\) vào mỗi phương trình trong hệ ta có:
\(\begin{array}{l}2.3 - 5.3 = - 9 \ne - 2;\\3 + 3 = 6\,.\end{array}\)
Do đó, cặp số \(\left( {3;3} \right)\) không là nghiệm của phương trình thứ nhất trong hệ phương trình đã cho.
Vậy cặp số \(\left( {3;3} \right)\) không là nghiệm của hệ phương trình đã cho.
b. Thay giá trị \(x = 4;y = 2\) vào mỗi phương trình trong hệ ta có:
\(\begin{array}{l}2.4 - 5.2 = - 2;\\4 + 2 = 6\,\,.\end{array}\)
Suy ra cặp số \(\left( {4;2} \right)\) là nghiệm của từng phương trình trong hệ.
Do đó cặp số \(\left( {4;2} \right)\) là nghiệm của hệ phương trình đã cho.
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 3 trang 16 SGK Toán 9 Cánh diều
Hai bạn Dũng, Huy vào siêu thị mua vở và bút bi để ủng hộ các bạn học sinh vùng lũ lụt. Bạn Dũng mua 5 quyển vở và 3 chiếc bút bi với tổng số tiền phải trả là 39 000 đồng. Bạn Huy mua 6 quyển vở và 2 chiếc bút bi với tổng số tiền phải trả là 42 000 đồng. Giả sử giá của mỗi quyển vở là \(x\) đồng \(\left( {x > 0} \right)\), giá của mỗi chiếc bút bi là \(y\) đồng \(\left( {y > 0} \right)\).
a. Viết hai phương trình bậc nhất hai ẩn \(x,y\) lần lượt biểu thị tổng số tiền phải trả của bạn Dũng, bạn Huy.
b. Cặp số \(\left( {x;y} \right) = \left( {6\,\,000;3\,\,000} \right)\) có phải là nghiệm của từng phương trình bậc nhất đó hay không? Vì sao?
Phương pháp giải:
+ Tìm mối liên hệ giữa vật phẩm mua và \(x;y\);
+ Thay cặp số \(\left( {x;y} \right) = \left( {6\,\,000;\,3\,\,000} \right)\) vào từng phương trình để đối chiếu nghiệm.
Lời giải chi tiết:
a.
+ Bạn Dũng phải trả số tiền cho 5 quyển vở là: \(5x\) (đồng);
+ Bạn Dũng phải trả số tiền cho 3 chiếc bút bi là: \(3y\) (đồng);
Suy ra Số tiền bạn Dũng phải trả là: \(5x + 3y = 39000\).
+ Bạn Huy phải trả số tiền cho 6 quyển vở là: \(6x\) (đồng);
+ Bạn Huy phải trả số tiền cho 2 chiếc bút bi là: \(2y\) (đồng);
Suy ra Số tiền bạn Huy phải trả là: \(6x + 2y = 42000\).
b.
+ Thay cặp số \(\left( {x;y} \right) = \left( {6000;3000} \right)\) vào phương trình \(5x + y = 39000\) ta được:
\(\begin{array}{l}5.6000 + 3.3000 = 39000\\30000 + 9000 = 39000\end{array}\)
\(39000 = 39000\) (luôn đúng).
Vậy cặp số \(\left( {x;y} \right) = \left( {6000;3000} \right)\) là nghiệm của phương trình \(5x + y = 39000\).
+ Thay cặp số \(\left( {x;y} \right) = \left( {6000;3000} \right)\) vào phương trình \(6x + 2y = 42000\) ta được:
\(\begin{array}{l}6.6000 + 2.3000 = 42000\\36000 + 6000 = 42000\end{array}\)
\(42000 = 42000\) (luôn đúng).
Vậy cặp số \(\left( {x;y} \right) = \left( {6000;3000} \right)\) là nghiệm của phương trình \(6x + 2y = 42000\).
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 3 trang 16 SGK Toán 9 Cánh diều
Cho ví dụ về hệ phương trình hai ẩn.
Phương pháp giải:
Dựa vào khái niệm hệ phương trình bậc nhất hai ẩn để lấy ví dụ.
Lời giải chi tiết:
\(\left\{ \begin{array}{l}2x + y = 1\\ - x + 4y = 5\end{array} \right.\)
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 4 trang 17 SGK Toán 9 Cánh diều
Cho hệ phương trình: \(\left\{ \begin{array}{l}2x - 5y = - 2\\x + y = 6\end{array} \right.\).
Kiểm tra xem cặp số nào sau đây là nghiệm của phương trình đã cho:
a. \(\left( {3;3} \right)\);
b. \(\left( {4;2} \right)\).
Phương pháp giải:
Thay nghiệm vào hệ phương trình để kiểm tra.
Lời giải chi tiết:
a. Thay giá trị \(x = 3;y = 3\) vào mỗi phương trình trong hệ ta có:
\(\begin{array}{l}2.3 - 5.3 = - 9 \ne - 2;\\3 + 3 = 6\,.\end{array}\)
Do đó, cặp số \(\left( {3;3} \right)\) không là nghiệm của phương trình thứ nhất trong hệ phương trình đã cho.
Vậy cặp số \(\left( {3;3} \right)\) không là nghiệm của hệ phương trình đã cho.
b. Thay giá trị \(x = 4;y = 2\) vào mỗi phương trình trong hệ ta có:
\(\begin{array}{l}2.4 - 5.2 = - 2;\\4 + 2 = 6\,\,.\end{array}\)
Suy ra cặp số \(\left( {4;2} \right)\) là nghiệm của từng phương trình trong hệ.
Do đó cặp số \(\left( {4;2} \right)\) là nghiệm của hệ phương trình đã cho.
Mục 2 của chương trình Toán 9 tập 1 - Cánh diều tập trung vào việc ôn tập và hệ thống hóa kiến thức về hàm số bậc nhất. Các bài tập trong mục này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, đồng thời rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.
Bài 1 yêu cầu học sinh xác định các yếu tố của hàm số bậc nhất (hệ số a, b), vẽ đồ thị hàm số và tìm các điểm thuộc đồ thị. Để giải bài tập này, học sinh cần nắm vững định nghĩa hàm số bậc nhất, các tính chất của đồ thị hàm số và cách xác định các điểm thuộc đồ thị.
Bài 2 đưa ra các bài toán thực tế liên quan đến hàm số bậc nhất, ví dụ như tính quãng đường đi được của một vật chuyển động đều, tính tiền điện tiêu thụ hàng tháng. Để giải bài tập này, học sinh cần phân tích đề bài, xác định các yếu tố liên quan đến hàm số và xây dựng phương trình hàm số phù hợp.
Ví dụ: Một ô tô đi với vận tốc 60km/h. Gọi t là thời gian ô tô đi được (tính bằng giờ) và s là quãng đường ô tô đi được (tính bằng km). Hãy viết công thức tính quãng đường s theo thời gian t.
Lời giải: s = 60t
Bài 3 là một bài tập tổng hợp, yêu cầu học sinh vận dụng tất cả các kiến thức đã học trong mục 2 để giải quyết một bài toán phức tạp hơn. Bài tập này đòi hỏi học sinh phải có khả năng phân tích, tổng hợp và vận dụng kiến thức một cách linh hoạt.
Ngoài sách giáo khoa, học sinh có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 9:
Hy vọng rằng với lời giải chi tiết và những lời khuyên hữu ích trên đây, các em học sinh sẽ tự tin hơn khi giải các bài tập trong mục 2 trang 16, 17 SGK Toán 9 tập 1 - Cánh diều. Chúc các em học tập tốt!