Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9 tập 1 - Cánh diều. Bài viết này sẽ hướng dẫn bạn từng bước giải bài tập 3 trang 25, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, đồng thời giúp bạn hiểu rõ bản chất của từng bài toán.
Xác định (a,b) để đồ thị của hàm số (y = ax + b) đi qua hai điểm (A,B) trong mỗi trường hợp sau: a. (Aleft( {1; - 2} right)) và (Bleft( { - 2; - 11} right)); b. (Aleft( {2;8} right)) và (Bleft( { - 4;5} right)).
Đề bài
Xác định \(a,b\) để đồ thị của hàm số \(y = ax + b\) đi qua hai điểm \(A,B\) trong mỗi trường hợp sau:
a. \(A\left( {1; - 2} \right)\) và \(B\left( { - 2; - 11} \right)\);
b. \(A\left( {2;8} \right)\) và \(B\left( { - 4;5} \right)\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+ Viết hệ phương trình ẩn \(a,b\);
+ Giải hệ phương trình theo phương pháp cộng đại số hoặc phương pháp thế;
+ Kết luận bài toán.
Lời giải chi tiết
a.
Do đồ thị của hàm số \(y = ax + b\) đi qua điểm \(A\left( {1; - 2} \right)\) nên ta có phương trình: \(a + b = - 2\,\,\,\,\left( 1 \right)\)
Do đồ thị của hàm số \(y = ax + b\) đi qua điểm \(B\left( { - 2; - 11} \right)\) nên ta có phương trình: \( - 2a + b = - 11\,\,\left( 2 \right)\)
Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}a + b = - 2\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - 2a + b = - 11\,\,\,\left( 2 \right)\end{array} \right.\)
Ta giải hệ phương trình trên:
+ Trừ từng vế của phương trình (1) và (2), ta nhận được phương trình \(3a = 9\), tức là \(a = 3\).
+ Thế giá trị \(a = 3\) vào phương trình (1), ta được phương trình: \(3 + b = - 2\) (3)
+ Giải phương trình (3): \(b = - 5\).
+ Do đó hệ phương trình đã cho có nghiệm \(\left( {a;b} \right) = \left( {3; - 5} \right)\).
Vậy ta có hàm số: \(y = 3x - 5\).
b.
Do đồ thị của hàm số \(y = ax + b\) đi qua điểm \(A\left( {2;8} \right)\) nên ta có phương trình: \(2a + b = 8\,\,\,\left( 1 \right)\)
Do đồ thị của hàm số \(y = ax + b\) đi qua điểm \(B\left( { - 4;5} \right)\) nên ta có phương trình: \( - 4a + b = 5\,\,\left( 2 \right)\)
Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}2a + b = 8\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - 4a + b = 5\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
Ta giải hệ phương trình trên:
+ Trừ từng vế của phương trình (1) và (2), ta nhận được phương trình \(6a = 3\) tức là \(a = \frac{1}{2}\).
+ Thế giá trị \(a = \frac{1}{2}\) vào phương trình (1), ta được phương trình: \(2.\frac{1}{2} + b = 8\) (3)
+ Giải phương trình (3):
\(\begin{array}{l}1 + b = 8\\\,\,\,\,\,\,b = 7\end{array}\)
+ Do đó hệ phương trình đã cho có nghiệm: \(\left( {a;b} \right) = \left( {\frac{1}{2};7} \right)\).
Vậy ta có hàm số: \(y = \frac{1}{2}x + 7\).
Bài tập 3 trang 25 SGK Toán 9 tập 1 - Cánh diều thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải các bài toán thực tế, cụ thể là xác định hàm số và tính giá trị của hàm số tại một điểm cho trước.
Bài tập 3 bao gồm các ý nhỏ khác nhau, mỗi ý yêu cầu học sinh thực hiện một thao tác cụ thể liên quan đến hàm số bậc nhất. Cụ thể:
Để giải bài tập 3 trang 25 SGK Toán 9 tập 1 - Cánh diều một cách hiệu quả, bạn có thể áp dụng các phương pháp sau:
Ý a: Giả sử đồ thị hàm số y = ax + b đi qua hai điểm A(x1; y1) và B(x2; y2). Thay tọa độ của hai điểm này vào phương trình hàm số, ta được:
y1 = ax1 + b
y2 = ax2 + b
Giải hệ phương trình này, ta tìm được giá trị của a và b.
Ý b: Sau khi đã xác định được giá trị của a và b, bạn thay giá trị của x vào phương trình y = ax + b để tính giá trị của y.
Ý c: Để hàm số bậc nhất y = ax + b đồng biến, điều kiện là a > 0. Để hàm số bậc nhất y = ax + b nghịch biến, điều kiện là a < 0.
Cho hàm số y = 2x - 1. Hãy xác định xem hàm số này đồng biến hay nghịch biến?
Vì hệ số a = 2 > 0, nên hàm số y = 2x - 1 là hàm số đồng biến.
Hãy giải các bài tập sau để củng cố kiến thức về hàm số bậc nhất:
Bài tập 3 trang 25 SGK Toán 9 tập 1 - Cánh diều là một bài tập quan trọng giúp học sinh hiểu rõ hơn về hàm số bậc nhất và các ứng dụng của nó. Hy vọng rằng, với những hướng dẫn chi tiết và ví dụ minh họa trong bài viết này, bạn sẽ tự tin hơn trong việc giải bài tập và đạt kết quả tốt trong môn Toán.