Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 7 trang 78 sách giáo khoa Toán 9 tập 2 - Cánh diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.
Cho tứ giác nội tiếp ABCD có tam giác ABC là tam giác nhọn. Hai đường cao AM, CN của tam giác ABC cắt nhau tại H (Hình 30). Chứng minh: a) (widehat {MHN} + widehat {ABC} = 180^circ .) b) (widehat {AHC} = widehat {ADC.}) c) (widehat {ADC} = widehat {BAM} + 90^circ .)
Đề bài
Cho tứ giác nội tiếp ABCD có tam giác ABC là tam giác nhọn. Hai đường cao AM, CN của tam giác ABC cắt nhau tại H (Hình 30). Chứng minh:
a) \(\widehat {MHN} + \widehat {ABC} = 180^\circ .\)
b) \(\widehat {AHC} = \widehat {ADC.}\)
c) \(\widehat {ADC} = \widehat {BAM} + 90^\circ .\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a) Áp dụng tổng 4 góc trong tứ giác HMBN bằng \(180^\circ \)
b) \(\widehat {AHC} = \widehat {ADC}\) vì cùng bù với góc CBA.
c) Chứng minh \(\widehat {BAM} + \widehat {AMB} = \widehat {BAM} + 90^\circ = 180^\circ - \widehat {MBA} = \widehat {ADC}.\)
Lời giải chi tiết
a) Do tam giác ABC có hai đường cao AM, CN nên \(\widehat {HMB} = 90^\circ ,\widehat {BNH} = 90^\circ \)
Xét tứ giác HMBN có:
\(\begin{array}{l}\widehat {NHM} + \widehat {HMB} + \widehat {MBN} + \widehat {BNH} = 360^\circ \\\widehat {NHM} + \widehat {MBN} = 360^\circ - \widehat {HMB} - \widehat {BNH}\\\widehat {NHM} + \widehat {MBN} = 360^\circ - 90^\circ - 90^\circ = 180^\circ .\end{array}\)
Hay \(\widehat {MHN} + \widehat {ABC} = 180^\circ .\)
b) Vì ABCD nội tiếp đường tròn nên \(\widehat {CDA} + \widehat {ABC} = 180^\circ .\)
mà \(\widehat {MHN} + \widehat {ABC} = 180^\circ \) (câu a)
suy ra \(\widehat {CDA} = \widehat {MHN}\), hơn nữa \(\widehat {CHA} = \widehat {MHN}\) (đối đỉnh)
vậy \(\widehat {CHA} = \widehat {CDA.}\)
c) Xét tam giác AMB vuông tại M có: \(\widehat {BAM} + \widehat {AMB} = \widehat {BAM} + 90^\circ = 180^\circ - \widehat {MBA.}\)
Mà \(180^\circ - \widehat {MBA} = \widehat {ADC}\) (do ABCD nội tiếp)
Vậy \(\widehat {ADC} = \widehat {BAM} + 90^\circ .\)
Bài tập 7 trang 78 SGK Toán 9 tập 2 - Cánh diều thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế, cụ thể là xác định hàm số và tính giá trị của hàm số tại một điểm cho trước.
Bài tập 7 bao gồm các ý nhỏ khác nhau, mỗi ý yêu cầu học sinh thực hiện một công việc cụ thể liên quan đến hàm số bậc nhất. Thông thường, các ý sẽ yêu cầu:
Để giải bài tập 7 trang 78 SGK Toán 9 tập 2 - Cánh diều một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Dưới đây là lời giải chi tiết cho từng ý của bài tập 7 trang 78 SGK Toán 9 tập 2 - Cánh diều:
...
...
...
Ví dụ: Cho hàm số y = 2x - 1. Tính giá trị của y khi x = 3.
Giải: Thay x = 3 vào hàm số y = 2x - 1, ta được: y = 2 * 3 - 1 = 5.
Vậy, khi x = 3 thì y = 5.
Để củng cố kiến thức về hàm số bậc nhất, bạn có thể luyện tập thêm các bài tập sau:
Bài tập 7 trang 78 SGK Toán 9 tập 2 - Cánh diều là một bài tập quan trọng giúp bạn hiểu rõ hơn về hàm số bậc nhất. Hy vọng rằng, với lời giải chi tiết và các ví dụ minh họa trên, bạn đã có thể giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!
STT | Bài tập | Đáp án |
---|---|---|
1 | ... | ... |
2 | ... | ... |