Logo Header
  1. Môn Toán
  2. Giải bài tập 2 trang 86 SGK Toán 9 tập 1 - Cánh diều

Giải bài tập 2 trang 86 SGK Toán 9 tập 1 - Cánh diều

Giải bài tập 2 trang 86 SGK Toán 9 tập 1 - Cánh diều

Chào mừng các em học sinh đến với lời giải chi tiết bài tập 2 trang 86 SGK Toán 9 tập 1 - Cánh diều trên giaitoan.edu.vn. Bài viết này sẽ cung cấp đáp án, phương pháp giải và giải thích chi tiết từng bước để giúp các em hiểu rõ hơn về bài học.

Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, giúp các em học toán 9 một cách hiệu quả nhất. Hãy cùng bắt đầu với bài tập 2 trang 86 nhé!

Cho tam giác (ABC) có đường cao (AH = 6cm,widehat B = 40^circ ,widehat C = 35^circ ). Tính độ dài các đoạn thẳng (AB,BH,AC,BC) (làm tròn kết quả đến hàng phần mười của centimét).

Đề bài

Cho tam giác \(ABC\) có đường cao \(AH = 6cm,\widehat B = 40^\circ ,\widehat C = 35^\circ \). Tính độ dài các đoạn thẳng \(AB,BH,AC,BC\) (làm tròn kết quả đến hàng phần mười của centimét).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtGiải bài tập 2 trang 86 SGK Toán 9 tập 1 - Cánh diều 1

Dựa vào các mối liên hệ giữa tỉ số lượng giác và các cạnh để giải bài toán.

Lời giải chi tiết

Giải bài tập 2 trang 86 SGK Toán 9 tập 1 - Cánh diều 2

Xét tam giác \(ABH\) vuông tại \(H\), ta có:

+) \(AB = \frac{{AH}}{{\sin 40^\circ }} = \frac{6}{{\sin 40^\circ }} \approx 9,3\left( {cm} \right)\).

+) \(BH = \frac{{AH}}{{\tan 40^\circ }} = \frac{6}{{\tan 40^\circ }} \approx 7,2\left( {cm} \right)\).

Xét tam giác \(AHC\) vuông tại \(H\), ta có:

+) \(AC = \frac{{AH}}{{\sin 35^\circ }} = \frac{6}{{\sin 35^\circ }} \approx 10,5\left( {cm} \right)\).

+) \(CH = \frac{{AH}}{{\tan 35^\circ }} = \frac{6}{{\tan 35^\circ }} \approx 8,6\left( {cm} \right)\).

Ta có: \(BC = BH + HC \approx 7,2 + 8,6 \approx 15,8\left( {cm} \right)\).

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài tập 2 trang 86 SGK Toán 9 tập 1 - Cánh diều đặc sắc thuộc chuyên mục giải sgk toán 9 trên nền tảng soạn toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài tập 2 trang 86 SGK Toán 9 tập 1 - Cánh diều: Tổng quan

Bài tập 2 trang 86 SGK Toán 9 tập 1 - Cánh diều thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để xác định hệ số góc và đường thẳng song song, vuông góc.

Nội dung bài tập 2 trang 86 SGK Toán 9 tập 1 - Cánh diều

Bài tập 2 bao gồm các câu hỏi nhỏ, yêu cầu học sinh:

  • Xác định hệ số góc của đường thẳng cho trước.
  • Tìm điều kiện để hai đường thẳng song song.
  • Tìm điều kiện để hai đường thẳng vuông góc.
  • Viết phương trình đường thẳng thỏa mãn các điều kiện cho trước.

Lời giải chi tiết bài tập 2 trang 86 SGK Toán 9 tập 1 - Cánh diều

Câu a)

Đường thẳng có dạng y = ax + b. Hệ số góc của đường thẳng là a. Để xác định a, ta cần biết tọa độ của hai điểm thuộc đường thẳng hoặc một điểm và góc nghiêng của đường thẳng.

Ví dụ: Nếu đường thẳng đi qua hai điểm A(x1, y1) và B(x2, y2), thì hệ số góc a được tính bằng công thức: a = (y2 - y1) / (x2 - x1).

Câu b)

Hai đường thẳng y = a1x + b1 và y = a2x + b2 song song khi và chỉ khi a1 = a2 và b1 ≠ b2.

Điều này có nghĩa là hai đường thẳng có cùng hệ số góc nhưng khác tung độ gốc.

Câu c)

Hai đường thẳng y = a1x + b1 và y = a2x + b2 vuông góc khi và chỉ khi a1 * a2 = -1.

Điều này có nghĩa là tích của hệ số góc của hai đường thẳng bằng -1.

Câu d)

Để viết phương trình đường thẳng đi qua điểm M(x0, y0) và có hệ số góc a, ta sử dụng công thức: y - y0 = a(x - x0).

Ví dụ: Đường thẳng đi qua điểm M(1, 2) và có hệ số góc a = 3 có phương trình: y - 2 = 3(x - 1) hay y = 3x - 1.

Mở rộng kiến thức về hàm số bậc nhất

Hàm số bậc nhất có dạng y = ax + b, trong đó a là hệ số góc và b là tung độ gốc.

Hệ số góc a quyết định độ dốc của đường thẳng. Nếu a > 0, đường thẳng đi lên từ trái sang phải. Nếu a < 0, đường thẳng đi xuống từ trái sang phải. Nếu a = 0, đường thẳng là đường thẳng ngang.

Tung độ gốc b là tọa độ giao điểm của đường thẳng với trục Oy.

Bài tập tương tự

Để củng cố kiến thức về hàm số bậc nhất, các em có thể làm thêm các bài tập tương tự sau:

  • Bài tập 3 trang 86 SGK Toán 9 tập 1 - Cánh diều
  • Bài tập 4 trang 86 SGK Toán 9 tập 1 - Cánh diều
  • Các bài tập luyện tập về hàm số bậc nhất trên các trang web học toán online.

Kết luận

Bài tập 2 trang 86 SGK Toán 9 tập 1 - Cánh diều là một bài tập quan trọng giúp các em hiểu rõ hơn về hàm số bậc nhất và các tính chất của nó. Hy vọng với lời giải chi tiết và những kiến thức mở rộng trên, các em sẽ học tập tốt hơn môn Toán 9.

Khái niệmGiải thích
Hệ số gócĐộ dốc của đường thẳng
Tung độ gốcTọa độ giao điểm với trục Oy
Đường thẳng song songCó cùng hệ số góc, khác tung độ gốc
Đường thẳng vuông gócTích hệ số góc bằng -1

Tài liệu, đề thi và đáp án Toán 9