Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn giải bài tập 3 trang 72 SGK Toán 9 tập 1 - Cánh diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, vì vậy chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, đầy đủ và kèm theo các giải thích chi tiết để bạn có thể nắm vững kiến thức.
Rút gọn biểu thức: a. (A = sqrt {40_{}^2 - 24_{}^2} ); b. (B = left( {sqrt {12} + 2sqrt 3 - sqrt {27} } right).sqrt 3 ); c. (C = frac{{sqrt {63_{}^3 + 1} }}{{sqrt {63_{}^2 - 62} }}); d. (D = sqrt {60} - 5sqrt {frac{3}{5}} - 3sqrt {frac{5}{3}} ).
Đề bài
Rút gọn biểu thức:
a. \(A = \sqrt {40_{}^2 - 24_{}^2} \);
b. \(B = \left( {\sqrt {12} + 2\sqrt 3 - \sqrt {27} } \right).\sqrt 3 \);
c. \(C = \frac{{\sqrt {63_{}^3 + 1} }}{{\sqrt {63_{}^2 - 62} }}\);
d. \(D = \sqrt {60} - 5\sqrt {\frac{3}{5}} - 3\sqrt {\frac{5}{3}} \).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Áp dụng các kiến thức về căn bậc hai của một thương, căn bâc hai của một tích, đưa thừa số vào trong căn bậc hai và đưa thừa số ra ngoài căn bậc hai để giải bài toán.
Lời giải chi tiết
a. \(A = \sqrt {40_{}^2 - 24_{}^2} \)
\(\begin{array}{l} = \sqrt {\left( {40 - 24} \right)\left( {40 + 24} \right)} \\ = \sqrt {16.64} = \sqrt {16} .\sqrt {64} \\ = 4.8 = 32\end{array}\)
b. \(B = \left( {\sqrt {12} + 2\sqrt 3 - \sqrt {27} } \right).\sqrt 3 \)
\(\begin{array}{l} = \left( {2\sqrt 3 + 2\sqrt 3 - 3\sqrt 3 } \right).\sqrt 3 \\ = \sqrt 3.\sqrt 3 \\ = 3\end{array}\)
c. \(C = \frac{{\sqrt {{{63}^3} + 1} }}{{\sqrt {{{63}^2} - 62} }}\)
\(\begin{array}{l} = \frac{{\sqrt {\left( {63 + 1} \right)\left( {63_{}^2 - 63 + 1} \right)} }}{{\sqrt {63_{}^2 - 62} }}\\ = \frac{{\sqrt {64.\left( {63_{}^2 - 62} \right)} }}{{\sqrt {63_{}^2 - 62} }}\\ = \frac{{\sqrt {64} .\sqrt {63_{}^2 - 62} }}{{\sqrt {63_{}^2 - 62} }}\\ = \sqrt {64} \\ = 8\end{array}\)
d. \(D = \sqrt {60} - 5\sqrt {\frac{3}{5}} - 3\sqrt {\frac{5}{3}} \)
\(\begin{array}{l} = \sqrt {4.15} - \sqrt {5^2.\frac{3}{5}} - \sqrt {3^2.\frac{5}{3}}\\ = 2\sqrt {15}- \sqrt {15} - \sqrt {15}\\ = 0\end{array}\)
Bài tập 3 trang 72 SGK Toán 9 tập 1 - Cánh diều thuộc chương trình học Toán 9, tập trung vào việc vận dụng các kiến thức về hàm số bậc nhất và ứng dụng của nó trong thực tế. Để giải quyết bài tập này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản như:
Bài tập 3 thường bao gồm các dạng bài sau:
Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi qua từng dạng bài cụ thể:
Để xác định hệ số a của hàm số y = ax + b khi biết đồ thị của hàm số, bạn có thể thực hiện theo các bước sau:
Để tìm giá trị của x khi biết giá trị của y, bạn chỉ cần thay giá trị của y vào phương trình y = ax + b và giải phương trình để tìm ra giá trị của x.
Để vẽ đồ thị của hàm số y = ax + b, bạn có thể thực hiện theo các bước sau:
Khi giải các bài toán thực tế liên quan đến hàm số bậc nhất, bạn cần:
Ví dụ: Cho hàm số y = 2x - 1. Hãy tìm giá trị của x khi y = 5.
Giải: Thay y = 5 vào phương trình y = 2x - 1, ta có:
5 = 2x - 1
2x = 6
x = 3
Vậy, khi y = 5 thì x = 3.
Để củng cố kiến thức và kỹ năng giải bài tập, bạn nên luyện tập thêm với các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Ngoài ra, bạn có thể tìm kiếm các bài giảng trực tuyến hoặc tham gia các khóa học Toán 9 để được hướng dẫn chi tiết hơn.
Hy vọng rằng với hướng dẫn chi tiết này, bạn đã có thể tự tin giải bài tập 3 trang 72 SGK Toán 9 tập 1 - Cánh diều. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!