Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn giải bài tập 6 trang 60 SGK Toán 9 tập 1 - Cánh diều một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.
So sánh: a. (sqrt 3 .sqrt 7 ) và (sqrt {22} ); b. (frac{{sqrt {52} }}{{sqrt 2 }}) và (5); c. (3sqrt 7 ) và (sqrt {65} ).
Đề bài
So sánh:
a. \(\sqrt 3 .\sqrt 7 \) và \(\sqrt {22} \);
b. \(\frac{{\sqrt {52} }}{{\sqrt 2 }}\) và \(5\);
c. \(3\sqrt 7 \) và \(\sqrt {65} \).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Áp dụng các quy tắc về căn bậc hai để đưa các biểu thức về trong căn rồi so sánh.
Lời giải chi tiết
a. Ta có: \(\sqrt 3 .\sqrt 7 = \sqrt {3.7} = \sqrt {21} \)
Do \(21 < 22\) nên \(\sqrt {21} < \sqrt {22} \) hay \(\sqrt {3.7} < \sqrt {22} \). Vậy \(\sqrt 3 .\sqrt 7 < \sqrt {22} \).
b. Ta có: \(\frac{{\sqrt {52} }}{{\sqrt 2 }} = \sqrt {\frac{{52}}{2}} = \sqrt {26} \).
Do \(26 > 25\) nên \(\sqrt {26} > \sqrt {25} \) hay \(\sqrt {\frac{{52}}{2}} > 5\). Vậy \(\frac{{\sqrt {52} }}{{\sqrt 2 }} > 5\).
c. Ta có: \(3\sqrt 7 = \sqrt {{3^2}.7} = \sqrt {9.7} = \sqrt {63} \).
Do \(63 < 65\) nên \(\sqrt {63} < \sqrt {65} \). Vậy \(3\sqrt 7 < \sqrt {65} \).
Bài tập 6 trang 60 SGK Toán 9 tập 1 - Cánh diều thuộc chương trình đại số, tập trung vào việc giải phương trình bậc hai một ẩn. Để giải quyết bài tập này, học sinh cần nắm vững các kiến thức cơ bản về phương trình bậc hai, bao gồm:
Bài tập 6 thường bao gồm các phương trình bậc hai với các hệ số a, b, c khác nhau. Yêu cầu của bài tập là tìm nghiệm của phương trình hoặc xác định số nghiệm của phương trình.
Để giải bài tập này, bạn có thể thực hiện theo các bước sau:
Giả sử phương trình cần giải là: 2x2 - 5x + 2 = 0
Để củng cố kiến thức, bạn có thể tự giải các bài tập tương tự trong SGK Toán 9 tập 1 - Cánh diều hoặc các đề thi thử.
Bài tập 6 trang 60 SGK Toán 9 tập 1 - Cánh diều là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải phương trình bậc hai. Hy vọng với hướng dẫn chi tiết này, bạn sẽ tự tin hơn trong việc giải quyết bài tập và đạt kết quả tốt trong môn Toán.
Phương trình | Nghiệm |
---|---|
x2 - 4x + 3 = 0 | x1 = 1, x2 = 3 |
2x2 + 3x - 5 = 0 | x1 = 1, x2 = -2.5 |
Đây chỉ là một vài ví dụ minh họa. Bạn nên tự giải thêm nhiều bài tập khác để nắm vững kiến thức. |