Chào mừng các em học sinh đến với lời giải chi tiết bài tập 2 trang 110 SGK Toán 9 tập 1 - Cánh diều. Tại giaitoan.edu.vn, chúng tôi cung cấp đáp án chính xác, dễ hiểu cùng với phương pháp giải bài tập hiệu quả, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Bài tập 2 thuộc chương trình học Toán 9 tập 1, tập trung vào việc vận dụng các kiến thức đã học để giải quyết các bài toán thực tế. Chúng tôi hy vọng với những hướng dẫn chi tiết này, các em sẽ hiểu rõ hơn về cách tiếp cận và giải quyết các bài toán tương tự.
Cho đường tròn (left( O right)) và dây (AB). Điểm (M) nằm ngoài đường tròn (left( O right)) thỏa mãn điểm (B) nằm trong góc (MAO) và (widehat {MAB} = frac{1}{2}widehat {AOB}). Chứng minh đường thẳng (MA) là tiếp tuyến của đường tròn (left( O right)).
Đề bài
Cho đường tròn \(\left( O \right)\) và dây \(AB\). Điểm \(M\) nằm ngoài đường tròn \(\left( O \right)\) thỏa mãn điểm \(B\) nằm trong góc \(MAO\) và \(\widehat {MAB} = \frac{1}{2}\widehat {AOB}\). Chứng minh đường thẳng \(MA\) là tiếp tuyến của đường tròn \(\left( O \right)\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Dựa vào tính chất tiếp tuyến để chứng minh.
Lời giải chi tiết
Ta có: \(OA = OB = R\) nên tam giác \(OAB\) cân tại \(O\) suy ra \(\widehat {OAB} = \widehat {OBA}\).
Xét tam giác \(OAB\) cân tại \(O\) có:
\(\begin{array}{l}\widehat {OAB} + \widehat {OBA} + \widehat {AOB} = 180^\circ \Rightarrow \widehat {OAB} + \widehat {OAB} + \widehat {AOB} = 180^\circ \\ \Rightarrow 2\widehat {OAB} = 180^\circ - \widehat {AOB} \Rightarrow \widehat {OAB} = 90^\circ - \frac{1}{2}\widehat {AOB}.\end{array}\)
Ta có: \(\widehat {OAM} = \widehat {OAB} + \widehat {BAM} = 90^\circ - \frac{1}{2}\widehat {AOB} + \frac{1}{2}\widehat {AOB} = 90^\circ .\)
Suy ra \(OA \bot AM\). Vậy \(MA\) là tiếp tuyến của đường tròn \(\left( O \right)\).
Bài tập 2 trang 110 SGK Toán 9 tập 1 - Cánh diều là một bài tập quan trọng trong chương trình học, yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các vấn đề thực tế. Dưới đây là hướng dẫn chi tiết và phương pháp giải bài tập này:
Trước khi đi vào giải bài, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Bài tập 2 thường yêu cầu học sinh:
Để giải bài tập 2 trang 110 SGK Toán 9 tập 1 - Cánh diều, chúng ta có thể áp dụng các phương pháp sau:
Đề bài: (Giả sử đề bài cụ thể của bài 2a ở đây)
Lời giải:
Bước 1: Xác định hàm số...
Bước 2: Vẽ đồ thị hàm số...
Bước 3: Giải các bài toán liên quan...
Đề bài: (Giả sử đề bài cụ thể của bài 2b ở đây)
Lời giải:
Bước 1: Xác định hàm số...
Bước 2: Vẽ đồ thị hàm số...
Bước 3: Giải các bài toán liên quan...
Để hiểu sâu hơn về hàm số bậc nhất và hàm số bậc hai, các em có thể tham khảo thêm các tài liệu sau:
Để củng cố kiến thức, các em có thể tự giải các bài tập tương tự sau:
Hy vọng với hướng dẫn chi tiết này, các em sẽ giải quyết thành công bài tập 2 trang 110 SGK Toán 9 tập 1 - Cánh diều. Chúc các em học tập tốt!