Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9 tập 1 - Cánh diều. Bài viết này sẽ hướng dẫn bạn từng bước giải bài tập 8 trang 27, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, đồng thời giúp bạn hiểu rõ bản chất của từng bài toán.
Tại một buổi biểu diễn nhằm gây quỹ từ thiện, ban tổ chức đã bán 500 vé. Trong đó có hai loại vé: vé loại I giá 100 000 đồng; vé loại II giá 75 000 đồng. Tổng số tiền thu được từ bán vé là 44 500 000 đồng. Tính số vé bán ra của mỗi loại.
Đề bài
Tại một buổi biểu diễn nhằm gây quỹ từ thiện, ban tổ chức đã bán 500 vé. Trong đó có hai loại vé: vé loại I giá 100 000 đồng; vé loại II giá 75 000 đồng. Tổng số tiền thu được từ bán vé là 44 500 000 đồng. Tính số vé bán ra của mỗi loại.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+ Gọi ẩn \(x,y\). Tìm đơn vị và điều kiện của \(x,y\).
+ Biểu diễn các đại lượng qua \(x,y\).
+ Viết hệ phương trình.
+ Giải hệ phương trình.
+ Kết luận bài toán.
Lời giải chi tiết
Gọi số vé bán ra của loại I là \(x\) (vé, \(x < 500;x \in {\mathbb{N}^*}\))
Gọi số vé bán ra của loại II là \(y\) (vé, \(y < 500;y \in {\mathbb{N}^*}\)).
Do tổng số vé ban tổ chức đã bán là 500 vé nên ta có phương trình: \(x + y = 500\) (1)
Số tiền thu được từ bán vé loại I là: \(100000x\) (đồng)
Số tiền thu được từ bán vé loại II là: \(75000y\) (đồng)
Do tổng số vé thu được từ bán vé là 44 500 000 đồng, nên ta có phương trình:
\(100000x + 75000y = 44500000\) hay \(4x + 3y = 1780\) (2)
Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}x + y = 500\\4x + 3y = 1780\end{array} \right.\)
Từ phương trình (1) ta có: \(x = 500 - y\) (3)
Thế (3) vào phương trình (2), ta được: \(4\left( {500 - y} \right) + 3y = 1780\) (4)
Giải phương trình (4):
\(\begin{array}{l}4.\left( {500 - y} \right) + 3y = 1780\\2000 - 4y + 3y = 1780\\ - y = - 220\\y = 220\end{array}\)
Thay giá trị \(y = 220\) vào phương trình (3), ta có: \(x = 500 - 220 = 280\).
Vậy số vé bán ra của loại I là 280 vé
Số vé bán ra của loại II là 220 vé
Bài tập 8 trang 27 SGK Toán 9 tập 1 - Cánh diều thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế. Dưới đây là hướng dẫn chi tiết cách giải bài tập này:
Trước khi đi vào giải bài tập, chúng ta cần ôn lại một số kiến thức cơ bản về hàm số bậc nhất:
Đề bài: (Giả sử đề bài cụ thể của bài tập 8 được đưa ra ở đây. Ví dụ: Cho hàm số y = 2x - 3. Tìm x khi y = 5.)
Lời giải:
Kết luận: (Kết luận của bài toán. Ví dụ: Vậy x = 4.)
Để củng cố kiến thức, bạn có thể làm thêm một số bài tập tương tự sau:
Ngoài việc giải các bài tập cơ bản, bạn nên tìm hiểu thêm về các ứng dụng của hàm số bậc nhất trong thực tế, chẳng hạn như:
Khi giải bài tập về hàm số bậc nhất, bạn cần lưu ý một số điều sau:
Hy vọng với hướng dẫn chi tiết này, bạn đã có thể tự tin giải bài tập 8 trang 27 SGK Toán 9 tập 1 - Cánh diều. Chúc bạn học tập tốt!