Chào mừng các em học sinh đến với lời giải chi tiết bài tập 3 trang 34 SGK Toán 9 tập 1 - Cánh diều tại giaitoan.edu.vn. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, đồng hành cùng các em trên con đường chinh phục môn Toán.
a. Cho (a > b > 0). Chứng minh: (frac{1}{a} < frac{1}{b}). b. Áp dụng kết quả trên, hãy so sánh: (frac{{2022}}{{2023}}) và (frac{{2023}}{{2024}}).
Đề bài
a. Cho \(a > b > 0\). Chứng minh: \(\frac{1}{a} < \frac{1}{b}\).
b. Áp dụng kết quả trên, hãy so sánh: \(\frac{{2022}}{{2023}}\) và \(\frac{{2023}}{{2024}}\).
a. Cho \(a > b > 0\). Chứng minh: \(\frac{1}{a} < \frac{1}{b}\).
b. Áp dụng kết quả trên, hãy so sánh: \(\frac{{2022}}{{2023}}\) và \(\frac{{2023}}{{2024}}\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Xét hiệu để chứng minh. Sau đó dùng kết quả vừa chứng minh để so sánh.
Lời giải chi tiết
a. Do \(a > b\) nên \(b - a < 0\).
Do \(a > b > 0\) nên \(ab > 0\).
Xét hiệu \(\frac{1}{a} - \frac{1}{b} = \frac{{b - a}}{{ab}}\).
Do \(\left\{ \begin{array}{l}b - a < 0\\ab > 0\end{array} \right.\) nên \(\frac{{b - a}}{{ab}} < 0\).
Vậy \(\frac{1}{a} < \frac{1}{b}\).
b. Ta có: \(\frac{{2022}}{{2023}} = 1 - \frac{1}{{2023}};\,\frac{{2023}}{{2024}} = 1 - \frac{1}{{2024}}\)
Theo kết quả vừa chứng minh ta có:
\(2024 > 2023\) nên \(\frac{1}{{2023}} > \frac{1}{{2024}}\) suy ra \( - \frac{1}{{2023}} < - \frac{1}{{2024}}\) nên \(1 - \frac{1}{{2023}} < 1 - \frac{1}{{2024}}\).
Vậy \(\frac{{2022}}{{2023}} < \frac{{2023}}{{2024}}\).
Bài tập 3 trang 34 SGK Toán 9 tập 1 - Cánh diều thuộc chương trình đại số, tập trung vào việc giải phương trình bậc hai một ẩn. Đây là một phần kiến thức quan trọng, nền tảng cho các bài học tiếp theo. Bài tập yêu cầu học sinh vận dụng các công thức, phương pháp đã học để tìm nghiệm của phương trình.
Bài tập 3 bao gồm các phương trình bậc hai với các dạng khác nhau, đòi hỏi học sinh phải phân tích và lựa chọn phương pháp giải phù hợp. Cụ thể, các phương trình có thể được giải bằng các phương pháp sau:
Phương trình: 2x2 + 5x - 3 = 0
Ta có: a = 2, b = 5, c = -3
Tính delta (Δ): Δ = b2 - 4ac = 52 - 4 * 2 * (-3) = 25 + 24 = 49
Vì Δ > 0, phương trình có hai nghiệm phân biệt:
x1 = (-b + √Δ) / 2a = (-5 + √49) / (2 * 2) = (-5 + 7) / 4 = 1/2
x2 = (-b - √Δ) / 2a = (-5 - √49) / (2 * 2) = (-5 - 7) / 4 = -3
Vậy nghiệm của phương trình là x1 = 1/2 và x2 = -3
Phương trình: x2 - 4x + 4 = 0
Ta có: a = 1, b = -4, c = 4
Tính delta (Δ): Δ = b2 - 4ac = (-4)2 - 4 * 1 * 4 = 16 - 16 = 0
Vì Δ = 0, phương trình có nghiệm kép:
x1 = x2 = -b / 2a = -(-4) / (2 * 1) = 4 / 2 = 2
Vậy nghiệm của phương trình là x1 = x2 = 2
Phương trình: 3x2 - 2x + 1 = 0
Ta có: a = 3, b = -2, c = 1
Tính delta (Δ): Δ = b2 - 4ac = (-2)2 - 4 * 3 * 1 = 4 - 12 = -8
Vì Δ < 0, phương trình vô nghiệm.
Để giải nhanh các bài tập phương trình bậc hai, các em có thể áp dụng một số mẹo sau:
Để củng cố kiến thức, các em có thể tự giải các bài tập sau:
Hy vọng với lời giải chi tiết và những hướng dẫn trên, các em đã hiểu rõ cách giải bài tập 3 trang 34 SGK Toán 9 tập 1 - Cánh diều. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!