Chào mừng các em học sinh đến với bài giải chi tiết mục 1 trang 55 SGK Toán 9 tập 1 - Cánh diều trên giaitoan.edu.vn. Chúng tôi cung cấp lời giải đầy đủ, dễ hiểu, giúp các em nắm vững kiến thức và tự tin giải các bài tập Toán 9.
Bài giải này được xây dựng bởi đội ngũ giáo viên giàu kinh nghiệm, đảm bảo tính chính xác và phù hợp với chương trình học.
So sánh a. (sqrt {{4^2}} ) và (left| 4 right|) b. (sqrt {{{left( { - 5} right)}^2}} ) và (left| { - 5} right|)
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 1 trang 55 SGK Toán 9 Cánh diều
Tính:
a. \(\sqrt {{{35}^2}} \)
b. \(\sqrt {{{\left( { - \frac{7}{9}} \right)}^2}} \)
c. \(\sqrt {{{\left( {1 - \sqrt 2 } \right)}^2}} \)
Phương pháp giải:
Dựa vào tính chất “Với mọi số a, ta có: \(\sqrt {{a^2}} = \left| a \right|\)” để giải bài toán.
Lời giải chi tiết:
a. \(\sqrt {{{35}^2}} = \left| {35} \right| = 35\)
b. \(\sqrt {{{\left( { - \frac{7}{9}} \right)}^2}} = \left| { - \frac{7}{9}} \right| = \frac{7}{9}\)
c. \(\sqrt {{{\left( {1 - \sqrt 2 } \right)}^2}} = \left| {1 - \sqrt 2 } \right|\)
Do \(\sqrt 1 < \sqrt 2 \) hay \(1 < \sqrt 2 \) nên \(1 - \sqrt 2 < 0\). Vì thế, ta có: \(\left| {1 - \sqrt 2 } \right| = \sqrt 2 - 1\).
Vậy \(\sqrt {{{\left( {1 - \sqrt 2 } \right)}^2}} = \left| {1 - \sqrt 2 } \right| = \sqrt 2 - 1\).
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 1 trang 55 SGK Toán 9 Cánh diều
So sánh
a. \(\sqrt {{4^2}} \) và \(\left| 4 \right|\)
b. \(\sqrt {{{\left( { - 5} \right)}^2}} \) và \(\left| { - 5} \right|\)
Phương pháp giải:
Dựa vào định nghĩa căn bậc hai và trị tuyệt đối để so sánh.
Lời giải chi tiết:
a. Ta có: \(\sqrt {{4^2}} = \sqrt {16} = 4\)
\(\left| 4 \right| = 4\)
Vậy \(\sqrt {{4^2}} = \left| 4 \right|\).
b. Ta có: \(\sqrt {{{\left( { - 5} \right)}^2}} = \sqrt {25} = 5\)
\(\left| { - 5} \right| = 5\)
Vậy \(\sqrt {{{\left( { - 5} \right)}^2}} = \left| { - 5} \right|\).
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 1 trang 55 SGK Toán 9 Cánh diều
So sánh
a. \(\sqrt {{4^2}} \) và \(\left| 4 \right|\)
b. \(\sqrt {{{\left( { - 5} \right)}^2}} \) và \(\left| { - 5} \right|\)
Phương pháp giải:
Dựa vào định nghĩa căn bậc hai và trị tuyệt đối để so sánh.
Lời giải chi tiết:
a. Ta có: \(\sqrt {{4^2}} = \sqrt {16} = 4\)
\(\left| 4 \right| = 4\)
Vậy \(\sqrt {{4^2}} = \left| 4 \right|\).
b. Ta có: \(\sqrt {{{\left( { - 5} \right)}^2}} = \sqrt {25} = 5\)
\(\left| { - 5} \right| = 5\)
Vậy \(\sqrt {{{\left( { - 5} \right)}^2}} = \left| { - 5} \right|\).
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 1 trang 55 SGK Toán 9 Cánh diều
Tính:
a. \(\sqrt {{{35}^2}} \)
b. \(\sqrt {{{\left( { - \frac{7}{9}} \right)}^2}} \)
c. \(\sqrt {{{\left( {1 - \sqrt 2 } \right)}^2}} \)
Phương pháp giải:
Dựa vào tính chất “Với mọi số a, ta có: \(\sqrt {{a^2}} = \left| a \right|\)” để giải bài toán.
Lời giải chi tiết:
a. \(\sqrt {{{35}^2}} = \left| {35} \right| = 35\)
b. \(\sqrt {{{\left( { - \frac{7}{9}} \right)}^2}} = \left| { - \frac{7}{9}} \right| = \frac{7}{9}\)
c. \(\sqrt {{{\left( {1 - \sqrt 2 } \right)}^2}} = \left| {1 - \sqrt 2 } \right|\)
Do \(\sqrt 1 < \sqrt 2 \) hay \(1 < \sqrt 2 \) nên \(1 - \sqrt 2 < 0\). Vì thế, ta có: \(\left| {1 - \sqrt 2 } \right| = \sqrt 2 - 1\).
Vậy \(\sqrt {{{\left( {1 - \sqrt 2 } \right)}^2}} = \left| {1 - \sqrt 2 } \right| = \sqrt 2 - 1\).
Mục 1 trang 55 SGK Toán 9 tập 1 - Cánh diều thường xoay quanh các kiến thức về hàm số bậc nhất, bao gồm định nghĩa, tính chất, đồ thị và ứng dụng của hàm số. Việc nắm vững kiến thức này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình Toán 9.
Mục 1 thường tập trung vào:
Để giải các bài tập trong Mục 1 trang 55 SGK Toán 9 tập 1 - Cánh diều hiệu quả, các em cần:
Bài tập: Cho hàm số y = 2x - 1. Hãy xác định hệ số a và b, vẽ đồ thị hàm số và tìm giao điểm của đồ thị với trục hoành.
Giải:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các em nên:
Ngoài kiến thức trong SGK, các em có thể tìm hiểu thêm về:
Công thức | Mô tả |
---|---|
y = ax + b | Phương trình hàm số bậc nhất |
Độ dốc | Hệ số a |
Giao điểm với trục tung | Hệ số b |
Hy vọng với bài giải chi tiết này, các em sẽ hiểu rõ hơn về Mục 1 trang 55 SGK Toán 9 tập 1 - Cánh diều và tự tin giải các bài tập liên quan. Chúc các em học tập tốt!