Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 9 tập 1 của giaitoan.edu.vn. Ở bài viết này, chúng tôi sẽ cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong mục 4, trang 57 và 58 sách giáo khoa Toán 9 tập 1 - Cánh diều.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, rèn luyện kỹ năng giải toán và đạt kết quả tốt nhất trong học tập.
So sánh: a. (sqrt {{3^2}.11} ) và (3sqrt {11} ) b. (sqrt {{{left( { - 5} right)}^2}.2} ) và ( - left( { - 5sqrt 2 } right))
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 4 trang 57 SGK Toán 9 Cánh diều
So sánh:
a. \(\sqrt {{3^2}.11} \) và \(3\sqrt {11} \)
b. \(\sqrt {{{\left( { - 5} \right)}^2}.2} \) và \( - \left( { - 5\sqrt 2 } \right)\)
Phương pháp giải:
Dùng tính chất căn bậc hai của một tích để giải bài toán.
Lời giải chi tiết:
a. Ta có: \(\sqrt {{3^2}.11} = \sqrt {{3^2}} .\sqrt {11} = 3\sqrt {11} \).
b. Ta có: \(\sqrt {{{\left( { - 5} \right)}^2}.2} = \sqrt {{{\left( { - 5} \right)}^2}} .\sqrt 2 = 5\sqrt 2 \)
\( - \left( { - 5\sqrt 2 } \right) = 5\sqrt 2 \).
Vậy \(\sqrt {{{\left( { - 5} \right)}^2}.2} = - \left( { - 5\sqrt 2 } \right)\).
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 4 trang 58 SGK Toán 9 Cánh diều
Rút gọn biểu thức: \(\sqrt 3 + \sqrt {12} - \sqrt {27} \).
Phương pháp giải:
Sử dụng tính chất đưa thừa số ra ngoài dấu căn bậc hai để giải bài toán.
Lời giải chi tiết:
Ta có: \(\sqrt 3 + \sqrt {12} - \sqrt {27} = \sqrt 3 + \sqrt {4.3} - \sqrt {9.3} = \sqrt 3 + \sqrt {{2^2}.3} - \sqrt {{3^2}.3} = \sqrt 3 + 2\sqrt 3 - 3\sqrt 3 = 0\).
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 4 trang 58 SGK Toán 9 Cánh diều
Rút gọn biểu thức: \(\sqrt 3 + \sqrt {12} - \sqrt {27} \).
Phương pháp giải:
Sử dụng tính chất đưa thừa số ra ngoài dấu căn bậc hai để giải bài toán.
Lời giải chi tiết:
Ta có: \(\sqrt 3 + \sqrt {12} - \sqrt {27} = \sqrt 3 + \sqrt {4.3} - \sqrt {9.3} = \sqrt 3 + \sqrt {{2^2}.3} - \sqrt {{3^2}.3} = \sqrt 3 + 2\sqrt 3 - 3\sqrt 3 = 0\).
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 4 trang 57 SGK Toán 9 Cánh diều
So sánh:
a. \(\sqrt {{3^2}.11} \) và \(3\sqrt {11} \)
b. \(\sqrt {{{\left( { - 5} \right)}^2}.2} \) và \( - \left( { - 5\sqrt 2 } \right)\)
Phương pháp giải:
Dùng tính chất căn bậc hai của một tích để giải bài toán.
Lời giải chi tiết:
a. Ta có: \(\sqrt {{3^2}.11} = \sqrt {{3^2}} .\sqrt {11} = 3\sqrt {11} \).
b. Ta có: \(\sqrt {{{\left( { - 5} \right)}^2}.2} = \sqrt {{{\left( { - 5} \right)}^2}} .\sqrt 2 = 5\sqrt 2 \)
\( - \left( { - 5\sqrt 2 } \right) = 5\sqrt 2 \).
Vậy \(\sqrt {{{\left( { - 5} \right)}^2}.2} = - \left( { - 5\sqrt 2 } \right)\).
Mục 4 của chương trình Toán 9 tập 1 - Cánh diều tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Các bài tập trong mục này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, đồng thời rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.
Bài 1 yêu cầu học sinh xác định các yếu tố của hàm số bậc nhất (hệ số a, b), vẽ đồ thị hàm số và tìm các điểm thuộc đồ thị. Để giải bài tập này, học sinh cần nắm vững định nghĩa hàm số bậc nhất, các tính chất của đồ thị hàm số và cách xác định các điểm thuộc đồ thị.
Bài 2 đưa ra các bài toán thực tế liên quan đến hàm số bậc nhất, yêu cầu học sinh xây dựng mô hình toán học và giải quyết bài toán. Ví dụ, bài toán về việc tính tiền điện, tiền nước, hoặc tính quãng đường đi được trong một khoảng thời gian nhất định. Để giải bài tập này, học sinh cần biết cách chuyển đổi các thông tin thực tế thành các biểu thức toán học và sử dụng các kiến thức về hàm số bậc nhất để giải quyết bài toán.
Bài 3 cung cấp một số câu hỏi trắc nghiệm để kiểm tra mức độ hiểu bài của học sinh. Các câu hỏi trắc nghiệm bao gồm các câu hỏi về định nghĩa hàm số bậc nhất, các tính chất của đồ thị hàm số, và các ứng dụng của hàm số bậc nhất vào giải toán thực tế.
Dưới đây là hướng dẫn giải chi tiết cho từng bài tập trong mục 4 trang 57, 58 SGK Toán 9 tập 1 - Cánh diều:
Ngoài sách giáo khoa, học sinh có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 9:
Hy vọng rằng với hướng dẫn giải chi tiết này, các em học sinh sẽ tự tin hơn khi giải các bài tập trong mục 4 trang 57, 58 SGK Toán 9 tập 1 - Cánh diều. Chúc các em học tập tốt!