Chào mừng bạn đến với bài học về Lý thuyết Tỉ số lượng giác của góc nhọn trong chương trình Toán 9 Cánh diều tại giaitoan.edu.vn. Bài học này sẽ cung cấp cho bạn những kiến thức nền tảng và quan trọng nhất về các tỉ số lượng giác, giúp bạn giải quyết các bài toán liên quan một cách hiệu quả.
Chúng ta sẽ cùng nhau tìm hiểu định nghĩa, tính chất của sin, cosin, tang và cotang, cũng như cách áp dụng chúng vào việc giải tam giác vuông.
1. Tỉ số lượng giác của một góc nhọn \({\rm{sin\alpha }} = \frac{{cạnh\,đối}}{{cạnh\,huyền}};{\rm{cos\alpha }} = \frac{{cạnh\,kề}}{{cạnh\,huyền}};\) \({\rm{tan\alpha }} = \frac{{cạnh\,đối}}{{cạnh\,kề}};{\rm{cot\alpha }} = \frac{{cạnh\,kề}}{{cạnh\,đối}}.\) \(\cot \alpha = \frac{1}{{\tan \alpha }}\). \(\sin \alpha ,\cos \alpha ,\tan \alpha ,\cot \alpha \) gọi là các tỉ số lượng giác của góc nhọn \(\alpha \).
1. Tỉ số lượng giác của một góc nhọn
\({\rm{sin\alpha }} = \frac{{cạnh\,đối}}{{cạnh\,huyền}};{\rm{cos\alpha }} = \frac{{cạnh\,kề}}{{cạnh\,huyền}};\) \({\rm{tan\alpha }} = \frac{{cạnh\,đối}}{{cạnh\,kề}};{\rm{cot\alpha }} = \frac{{cạnh\,kề}}{{cạnh\,đối}}.\) \(\cot \alpha = \frac{1}{{\tan \alpha }}\). \(\sin \alpha ,\cos \alpha ,\tan \alpha ,\cot \alpha \) gọi là các tỉ số lượng giác của góc nhọn \(\alpha \). |
Tip học thuộc nhanh:
Sin đi học Cos không hư Tan đoàn kết Cotang kết đoàn |
Ví dụ:
Theo định nghĩa của tỉ số lượng giác, ta có:
\(\sin \alpha = \frac{{AC}}{{BC}} = \frac{4}{5}\), \(\cos \alpha = \frac{{AB}}{{BC}} = \frac{3}{5}\), \(\tan \alpha = \frac{{AC}}{{AB}} = \frac{4}{3}\), \(\cot \alpha = \frac{{AB}}{{AC}} = \frac{3}{4}\)
2. Tỉ số lượng giác của hai góc phụ nhau
Nhận xét: Hai góc nhọn có tổng bằng \({90^0}\) được gọi là hai góc phụ nhau.
Định lí về tỉ số lượng giác của hai góc phụ nhau
Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia. Với \({0^0} < \alpha < {90^0}\), ta có: \(\sin \left( {{{90}^0} - \alpha } \right) = \cos \alpha \); \(\cos \left( {{{90}^0} - \alpha } \right) = \sin \alpha \); \(\tan \left( {{{90}^0} - \alpha } \right) = \cot \alpha \); \(\cot \left( {{{90}^0} - \alpha } \right) = \tan \alpha \). |
Cho \(\alpha \) và \(\beta \) là hai góc phụ nhau, ta có:
\(\sin \alpha = \cos \beta \), \(\cos \alpha = \sin \beta \), \(\tan \alpha = \cot \beta \), \(\cot \alpha = \tan \beta \).
Ví dụ:
\(\begin{array}{l}\sin {60^0} = \cos \left( {{{90}^0} - {{60}^0}} \right) = \cos {30^0};\\\cos {52^0}30' = \sin \left( {{{90}^0} - {{52}^0}30'} \right) = \sin {37^0}30';\\\tan {80^0} = \cot \left( {{{90}^0} - {{80}^0}} \right) = \cot {10^0};\\\cot {82^0} = \tan \left( {{{90}^0} - {{82}^0}} \right) = \tan {8^0}.\end{array}\)
Bảng giá trị lượng giác của các góc \({30^0},{45^0},{60^0}\)
Quy ước:
\(\begin{array}{l}{\sin ^2}\alpha = {\left( {\sin \alpha } \right)^2};\\{\cos ^2}\alpha = {\left( {\cos \alpha } \right)^2};\\{\tan ^2}\alpha = {\left( {\tan \alpha } \right)^2};\\{\cot ^2}\alpha = {\left( {\cot \alpha } \right)^2}.\end{array}\)
3. Sử dụng máy tính cầm tay tính tỉ số lượng giác của một góc nhọn
Người ta thường dùng các đơn vị số đo góc là độ (kí hiệu: \(^0\)), phút (kí hiệu: \('\)), giây (kí hiệu: \(''\)).
Ta có thể sử dụng nhiều loại máy tính cầm tay để tính các tỉ số lượng giác của góc nhọn và tính số đo của góc nhọn khi biết một tỉ số lượng giác của nó.
Lưu ý: ta cần đổi đơn vị đo về độ.
Tính các tỉ số lượng giác của các góc nhọn
Để tính tỉ số lượng giác của một góc \(\alpha \), ta dùng các nút:
Để tính \(\cot \alpha \), ta tính \(\cot \alpha = \frac{1}{{\tan \alpha }}\) hoặc \(\tan \left( {{{90}^0} - \alpha } \right)\).
Bảng tóm tắt cách tính tỉ số lượng giác của một góc nhọn
Ví dụ:
Xác định số đo của góc nhọn khi biết một tỉ số lượng giác của góc đó
Bảng tóm tắt cách tính số đo của một góc nhọn khi biết một tỉ số lượng giác
Để tìm \(\alpha \) khi biết \(\cot \alpha \), ta tính \(\tan \alpha = \frac{1}{{\cot \alpha }}\) và dùng \(\tan \alpha \) để tính \(\alpha \).
Ví dụ:
Một số công thức mở rộng:
+) \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)
+) \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\)
+) \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }}\)
+) \(\tan \alpha .\cot \alpha = 1\)
+) \(\frac{1}{{{{\cos }^2}\alpha }} = {\tan ^2}\alpha + 1\)
+) \(\frac{1}{{{{\sin }^2}\alpha }} = {\cot ^2}\alpha + 1\)
Trong chương trình Toán 9, phần Tỉ số lượng giác của góc nhọn đóng vai trò quan trọng, là nền tảng cho việc giải quyết nhiều bài toán hình học và ứng dụng thực tế. Bài viết này sẽ trình bày chi tiết lý thuyết, ví dụ minh họa và bài tập thực hành để giúp học sinh nắm vững kiến thức này theo chương trình Cánh Diều.
Xét tam giác vuông ABC vuông tại A. Gọi AB = c, AC = b, BC = a.
Tương tự, ta có thể định nghĩa sin, cosin, tang và cotang của góc C.
Các tỉ số lượng giác của một góc nhọn luôn có giá trị nhỏ hơn 1. Điều này là do cạnh đối diện và cạnh kề luôn nhỏ hơn cạnh huyền.
Ngoài ra, còn có các hệ thức lượng giác cơ bản:
Góc | 0° | 30° | 45° | 60° | 90° |
---|---|---|---|---|---|
sin | 0 | 1/2 | √2/2 | √3/2 | 1 |
cos | 1 | √3/2 | √2/2 | 1/2 | 0 |
tan | 0 | 1/√3 | 1 | √3 | Không xác định |
cot | Không xác định | √3 | 1 | 1/√3 | 0 |
Tỉ số lượng giác được sử dụng rộng rãi trong việc giải tam giác vuông, tính góc và cạnh của tam giác, đo chiều cao của các vật thể, và trong nhiều lĩnh vực khác như hàng hải, kiến trúc, và kỹ thuật.
Bài 1: Cho tam giác ABC vuông tại A, AB = 5cm, AC = 12cm. Tính sin B, cos B, tan B, cot B.
Bài 2: Cho sin B = 0.6. Tính cos B và tan B.
Bài 3: Tính độ dài cạnh BC của tam giác ABC vuông tại A, biết AB = 8cm và góc B = 30°.
Lý thuyết Tỉ số lượng giác của góc nhọn là một phần kiến thức cơ bản và quan trọng trong chương trình Toán 9. Việc nắm vững lý thuyết và rèn luyện kỹ năng giải bài tập sẽ giúp học sinh tự tin hơn trong việc giải quyết các bài toán liên quan đến tam giác vuông và ứng dụng thực tế. Hy vọng bài viết này đã cung cấp cho bạn những kiến thức hữu ích và giúp bạn hiểu rõ hơn về chủ đề này.