Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn giải bài tập 6 trang 42 SGK Toán 9 tập 1 - Cánh diều một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chứng minh nửa chu vi của một tam giác lớn hơn độ dài mỗi cạnh của tam giác đó.
Đề bài
Chứng minh nửa chu vi của một tam giác lớn hơn độ dài mỗi cạnh của tam giác đó.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Gọi ẩn rồi biểu diễn các đại lượng theo ẩn rồi giải bất phương trình.
Lời giải chi tiết
Gọi ba cạnh của tam giác lần lượt là a, b, c.
Áp dụng bất đẳng thức tam giác ta có \(a + b > c\) nên \(a + b + c > 2c\). Vậy \(\frac{{a + b + c}}{2} > c\).
Áp dụng bất đẳng thức tam giác ta có \(a + c > b\) nên \(a + b + c > 2b\). Vậy \(\frac{{a + b + c}}{2} > b\).
Áp dụng bất đẳng thức tam giác ta có \(b + c > a\) nên \(a + b + c > 2a\). Vậy \(\frac{{a + b + c}}{2} > a\).
Vậy nửa chu vi của tam giác lớn hơn mỗi cạnh của tam giác đó.
Bài tập 6 trang 42 SGK Toán 9 tập 1 - Cánh diều thuộc chương trình đại số, tập trung vào việc giải phương trình bậc hai một ẩn. Để giải quyết bài tập này, học sinh cần nắm vững các kiến thức cơ bản về phương trình bậc hai, bao gồm:
Bài tập 6 thường bao gồm các phương trình bậc hai với các hệ số khác nhau. Yêu cầu của bài tập là tìm nghiệm của phương trình hoặc xác định số nghiệm của phương trình.
Để giải bài tập này, bạn có thể thực hiện theo các bước sau:
Giả sử phương trình cần giải là: 2x2 - 5x + 2 = 0
Để rèn luyện kỹ năng giải phương trình bậc hai, bạn có thể thực hành thêm các bài tập tương tự trong SGK Toán 9 tập 1 - Cánh diều hoặc các tài liệu tham khảo khác.
Bài tập 6 trang 42 SGK Toán 9 tập 1 - Cánh diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về phương trình bậc hai. Hy vọng với hướng dẫn chi tiết này, bạn sẽ tự tin hơn trong việc giải quyết bài tập và đạt kết quả tốt trong môn Toán.