Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn giải bài tập 5 trang 59 SGK Toán 9 tập 1 - Cánh diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải bài tập này với mục tiêu giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Áp dụng quy tắc đưa thừa số vào trong dấu căn bậc hai, hãy rút gọn biểu thức: a. (9sqrt {frac{2}{9}} - 3sqrt 2 ) b. (left( {2sqrt 3 + sqrt {11} } right)left( {sqrt {12} - sqrt {11} } right)) Phương pháp: Áp dụng quy tắc đưa thừa số vào trong dấu căn để xử lý bài toán.
Đề bài
Áp dụng quy tắc đưa thừa số vào trong dấu căn bậc hai, hãy rút gọn biểu thức:
a. \(9\sqrt {\frac{2}{9}} - 3\sqrt 2 \)
b. \(\left( {2\sqrt 3 + \sqrt {11} } \right)\left( {\sqrt {12} - \sqrt {11} } \right)\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Áp dụng quy tắc đưa thừa số vào trong dấu căn để xử lý bài toán.
Lời giải chi tiết
a. \(9\sqrt {\frac{2}{9}} - 3\sqrt 2 = \sqrt {{9^2}.\frac{2}{9}} - \sqrt {{3^2}.2} \) \( = \sqrt {9.2} - \sqrt {9.2} = \sqrt {18} - \sqrt {18} = 0\)
b.\(\left( {2\sqrt 3 + \sqrt {11} } \right)\left( {\sqrt {12} - \sqrt {11} } \right)\)\( = \left( {\sqrt {{2^2}.3} + \sqrt {11} } \right)\left( {\sqrt {12} - \sqrt {11} } \right)\)\( = \left( {\sqrt {12} + \sqrt {11} } \right)\left( {\sqrt {12} - \sqrt {11} } \right)\)\(\, = {\left( {\sqrt {12} } \right)^2} - {\left( {\sqrt {11} } \right)^2}\) \( = 12 - 11 = 1\)
Bài tập 5 trang 59 SGK Toán 9 tập 1 - Cánh diều thuộc chương Hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế.
Bài tập 5 yêu cầu học sinh xét hàm số y = (m-2)x + 3. Sau đó, xác định giá trị của m để hàm số là hàm số bậc nhất và tìm các điểm thuộc đồ thị hàm số khi m = 1.
Để hàm số y = (m-2)x + 3 là hàm số bậc nhất, hệ số của x phải khác 0. Tức là:
m - 2 ≠ 0
m ≠ 2
Khi m = 1, hàm số trở thành:
y = (1-2)x + 3
y = -x + 3
Để tìm các điểm thuộc đồ thị hàm số, ta có thể chọn các giá trị tùy ý của x và tính giá trị tương ứng của y.
Ví dụ:
Hàm số bậc nhất có dạng y = ax + b, trong đó a và b là các số thực, a ≠ 0. Đồ thị của hàm số bậc nhất là một đường thẳng. Để vẽ đồ thị của hàm số bậc nhất, ta cần xác định hai điểm thuộc đồ thị và nối chúng lại với nhau.
Để củng cố kiến thức về hàm số bậc nhất, bạn có thể làm thêm các bài tập tương tự trong SGK Toán 9 tập 1 - Cánh diều hoặc các tài liệu tham khảo khác.
Bài tập 5 trang 59 SGK Toán 9 tập 1 - Cánh diều là một bài tập quan trọng giúp học sinh hiểu rõ hơn về hàm số bậc nhất. Hy vọng với hướng dẫn chi tiết này, bạn đã có thể giải bài tập này một cách dễ dàng và hiệu quả.