Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn giải bài tập 4 trang 66 SGK Toán 9 tập 2 - Cánh diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, vì vậy chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, logic và dễ tiếp thu nhất.
Trên mặt phẳng tọa độ Oxy, đường parabol ở Hình 10 biểu diễn đồ thị của hàm số (y = a{x^2}). a) Tìm hệ số a. b) Tìm điểm thuộc đồ thị hàm số có hoành độ bằng 3. c) Tìm điểm thuộc đồ thị hàm số có tung độ bằng 4.
Đề bài
Trên mặt phẳng tọa độ Oxy, đường parabol ở Hình 10 biểu diễn đồ thị của hàm số \(y = a{x^2}\).
a) Tìm hệ số a.
b) Tìm điểm thuộc đồ thị hàm số có hoành độ bằng 3.
c) Tìm điểm thuộc đồ thị hàm số có tung độ bằng 4.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a) Thay tọa độ điểm \(\left( {2;\frac{{16}}{3}} \right)\) vào \(y = a{x^2}\) để tìm a.
b) Điểm thuộc đồ thị hàm số có hoành độ bằng 3 nên \(x = 3.\)
c) Điểm thuộc đồ thị hàm số có tung độ bằng 4 nên \(y = 4.\)
Lời giải chi tiết
a) Vì điểm \(\left( {2;\frac{{16}}{3}} \right)\) thuộc đồ thị hàm số, nên thay \(x = 2;y = \frac{{16}}{3}\) vào \(y = a{x^2}\), ta được:
\(\begin{array}{l}\frac{{16}}{3} = a{.2^2}\\a = \frac{4}{3}\end{array}\)
Vậy \(a = \frac{4}{3}\)
b) Với \(a = \frac{4}{3}\) hàm số trở thành \(y = \frac{4}{3}{x^2}.\)
Điểm thuộc đồ thị hàm số có hoành độ bằng 3 nên \(x = 3,\) ta có:
\(\begin{array}{l}y = \frac{4}{3}{x^2}\\y = \frac{4}{3}{.3^2} = 12.\end{array}\)
Vậy điểm cần tìm là \(\left( {3;12} \right)\).
c) Điểm thuộc đồ thị hàm số có tung độ bằng 4 nên \(y = 4.\) Ta có:
\(\begin{array}{l}y = \frac{4}{3}{x^2}\\4 = \frac{4}{3}{x^2}\end{array}\)
\(x = \pm \sqrt 3 \)
Vậy điểm cần tìm là \(\left( {\sqrt 3 ;4} \right),\left( { - \sqrt 3 ;4} \right).\)
Bài tập 4 trang 66 SGK Toán 9 tập 2 - Cánh diều thuộc chương trình học Toán 9, tập trung vào việc vận dụng kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm về hệ số góc, giao điểm của đồ thị hàm số và khả năng phân tích đề bài để tìm ra phương pháp giải phù hợp.
Trước khi bắt đầu giải bài tập, điều quan trọng nhất là phải đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Trong bài tập 4 trang 66, học sinh cần phải:
Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ cung cấp một lời giải chi tiết và dễ hiểu. (Nội dung lời giải chi tiết sẽ được trình bày ở đây, bao gồm các bước giải, giải thích và kết luận. Ví dụ:)
Ví dụ: Giả sử bài tập yêu cầu tìm giao điểm của hai đường thẳng y = 2x + 1 và y = -x + 4.
Ngoài bài tập 4 trang 66, SGK Toán 9 tập 2 - Cánh diều còn có nhiều bài tập tương tự khác. Để giải quyết các bài tập này, bạn có thể áp dụng các phương pháp sau:
Để nắm vững kiến thức về hàm số bậc nhất và hàm số bậc hai, bạn nên luyện tập thêm các bài tập khác trong SGK và các tài liệu tham khảo. Việc luyện tập thường xuyên sẽ giúp bạn hiểu rõ hơn về các khái niệm và phương pháp giải, đồng thời nâng cao khả năng giải quyết các bài toán phức tạp.
Bài tập 4 trang 66 SGK Toán 9 tập 2 - Cánh diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất và hàm số bậc hai. Hy vọng rằng với hướng dẫn chi tiết và dễ hiểu này, bạn sẽ có thể giải quyết bài tập này một cách nhanh chóng và hiệu quả. Chúc bạn học tốt!
Luôn kiểm tra lại kết quả của mình để đảm bảo tính chính xác. Nếu gặp khó khăn, hãy tham khảo ý kiến của giáo viên hoặc bạn bè.