Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn giải bài tập 5 trang 65 SGK Toán 9 tập 2 - Cánh diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, vì vậy chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, đầy đủ và kèm theo các giải thích chi tiết để bạn có thể nắm vững kiến thức.
Không tính (Delta ), giải phương trình: a) (3{x^2} - x - 2 = 0) b) ( - 4{x^2} + x + 5 = 0) c) (2sqrt 3 {x^2} + left( {5 - 2sqrt 3 } right)x - 5 = 0) d) ( - 3sqrt 2 {x^2} + left( {4 - 3sqrt 2 } right)x + 4 = 0)
Đề bài
Không tính \(\Delta \), giải phương trình:
a) \(3{x^2} - x - 2 = 0\)
b) \( - 4{x^2} + x + 5 = 0\)
c) \(2\sqrt 3 {x^2} + \left( {5 - 2\sqrt 3 } \right)x - 5 = 0\)
d) \( - 3\sqrt 2 {x^2} + \left( {4 - 3\sqrt 2 } \right)x + 4 = 0\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Áp dụng phương pháp nhẩm nghiệm:
- Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(a + b + c = 0\) thì phương trình có một nghiệm là \({x_1} = 1\) và nghiệm còn lại là \({x_2} = \frac{c}{a}.\)
- Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(a - b + c = 0\) thì phương trình có một nghiệm là \({x_1} = - 1\) và nghiệm còn lại là \({x_2} = - \frac{c}{a}.\)
Lời giải chi tiết
a) Phương trình có các hệ số \(a = 3;b = - 1;c = - 2.\)
Ta thấy: \(a + b + c = 3 - 1 - 2 = 0\) nên phương trình có nghiệm: \({x_1} = 1,{x_2} = \frac{{ - 2}}{3}.\)
b) Phương trình có các hệ số \(a = - 4;b = 1;c = 5.\)
Ta thấy: \(a - b + c = - 4 - 1 + 5 = 0\) nên phương trình có nghiệm: \({x_1} = - 1,{x_2} = \frac{{ - 5}}{{ - 4}} = \frac{5}{4}.\)
c) Phương trình có các hệ số \(a = 2\sqrt 3 ;b = 5 - 2\sqrt 3 ;c = - 5.\)
Ta thấy: \(a + b + c = 2\sqrt 3 + 5 - 2\sqrt 3 - 5 = 0\) nên phương trình có nghiệm: \({x_1} = 1,{x_2} = \frac{{ - 5}}{{2\sqrt 3 }} = \frac{{ - 5\sqrt 3 }}{6}.\)
d) Phương trình có các hệ số \(a = - 3\sqrt 2 ;b = 4 - 3\sqrt 2 ;c = 4.\).
Ta thấy: \(a - b + c = - 3\sqrt 2 - 4 + 3\sqrt 2 + 4 = 0\) nên phương trình có nghiệm: \({x_1} = - 1,{x_2} = \frac{{ - 4}}{{ - 3\sqrt 2 }} = \frac{{2\sqrt 2 }}{3}.\)
Bài tập 5 trang 65 SGK Toán 9 tập 2 - Cánh diều thuộc chương trình học Toán 9, tập trung vào việc vận dụng kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế. Để giải quyết bài tập này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản như:
Trước khi bắt đầu giải bài tập, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Bài tập 5 trang 65 thường yêu cầu chúng ta:
Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ cùng nhau phân tích và giải một ví dụ cụ thể. Giả sử đề bài yêu cầu chúng ta tìm hàm số bậc nhất đi qua hai điểm A(1; 2) và B(3; 4).
Hàm số bậc nhất có dạng y = ax + b. Chúng ta cần tìm giá trị của a và b.
Thay tọa độ điểm A(1; 2) vào hàm số, ta được: 2 = a * 1 + b => a + b = 2 (1)
Thay tọa độ điểm B(3; 4) vào hàm số, ta được: 4 = a * 3 + b => 3a + b = 4 (2)
Trừ phương trình (1) cho phương trình (2), ta được: (3a + b) - (a + b) = 4 - 2 => 2a = 2 => a = 1
Thay a = 1 vào phương trình (1), ta được: 1 + b = 2 => b = 1
Vậy hàm số bậc nhất cần tìm là y = x + 1.
Ngoài dạng bài tập tìm hàm số đi qua hai điểm, bài tập 5 trang 65 còn có thể xuất hiện các dạng bài tập khác như:
Để giải bài tập 5 trang 65 một cách hiệu quả, bạn có thể áp dụng một số mẹo sau:
Để củng cố kiến thức và kỹ năng giải bài tập, bạn nên luyện tập thêm với các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Bạn cũng có thể tìm kiếm các bài giải trên mạng để tham khảo và học hỏi kinh nghiệm.
Bài tập 5 trang 65 SGK Toán 9 tập 2 - Cánh diều là một bài tập quan trọng giúp bạn rèn luyện kỹ năng giải toán và vận dụng kiến thức về hàm số vào thực tế. Hy vọng với hướng dẫn chi tiết và các mẹo giải bài tập trên, bạn sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!