Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 3 trang 78 sách giáo khoa Toán 9 tập 2 - Cánh diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic, kèm theo các giải thích chi tiết để bạn có thể nắm vững kiến thức và áp dụng vào các bài tập tương tự.
Cho tam giác ABC nội tiếp đường tròn (O) thỏa mãn (widehat {ABC} = 60^circ ,widehat {ACB} = 70^circ .) Giả sử D là điểm thuộc cung BC không chứa A (D khác B và C). Tính số đo góc BDC.
Đề bài
Cho tam giác ABC nội tiếp đường tròn (O) thỏa mãn \(\widehat {ABC} = 60^\circ ,\widehat {ACB} = 70^\circ .\) Giả sử D là điểm thuộc cung BC không chứa A (D khác B và C). Tính số đo góc BDC.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Bước 1: Áp dụng Định lý tổng 3 góc trong tam giác ABC để tính góc A.
Bước 2: Áp dụng tổng 2 góc đối trong tứ giác nội tiếp đường tròn bằng \(180^\circ \) để tính góc BDC.
Lời giải chi tiết
Áp dụng Định lý tổng 3 góc trong tam giác ABC có:
\(\begin{array}{l}\widehat {ABC} + \widehat {BCA} + \widehat {CAB} = 180^\circ \\\widehat {CAB} = 180^\circ - \widehat {ABC} - \widehat {BCA}\\\widehat {CAB} = 180^\circ - 60^\circ - 70^\circ \\\widehat {CAB} = 50^\circ .\end{array}\)
Vì tứ giác ABDC nội tiếp đường tròn nên tổng 2 góc đối bằng \(180^\circ \), do đó ta có:
\(\begin{array}{l}\widehat A + \widehat D = 180^\circ \\\widehat D = 180^\circ - \widehat A\\\widehat D = 180^\circ - 50^\circ \\\widehat D = 130^\circ .\end{array}\)
Vậy \(\widehat {BDC} = 130^\circ .\)
Bài tập 3 trang 78 SGK Toán 9 tập 2 - Cánh diều thuộc chương trình học về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế, cụ thể là xác định hàm số và tính giá trị của hàm số tại một điểm cho trước.
Bài tập 3 bao gồm các ý nhỏ khác nhau, mỗi ý yêu cầu học sinh thực hiện một thao tác cụ thể liên quan đến hàm số bậc nhất. Cụ thể:
Để giải bài tập 3 trang 78 SGK Toán 9 tập 2 - Cánh diều một cách hiệu quả, bạn có thể áp dụng các phương pháp sau:
Ý a: Giả sử đồ thị hàm số y = ax + b đi qua hai điểm A(x1; y1) và B(x2; y2). Thay tọa độ của hai điểm này vào phương trình hàm số, ta được:
y1 = ax1 + b
y2 = ax2 + b
Giải hệ phương trình này, ta tìm được giá trị của a và b.
Ý b: Sau khi đã xác định được hệ số a và b, bạn thay giá trị của x vào phương trình y = ax + b để tính giá trị của y.
Ý c: Để hàm số y = ax + b đồng biến, điều kiện là a > 0. Để hàm số y = ax + b nghịch biến, điều kiện là a < 0.
Cho hàm số y = 2x - 1. Hãy tính giá trị của hàm số tại x = 3.
Thay x = 3 vào phương trình hàm số, ta được:
y = 2 * 3 - 1 = 5
Vậy, giá trị của hàm số tại x = 3 là 5.
Để củng cố kiến thức về hàm số bậc nhất, bạn có thể luyện tập thêm các bài tập tương tự trong sách giáo khoa và các tài liệu tham khảo khác. Ngoài ra, bạn cũng có thể tìm kiếm các bài tập trực tuyến trên các trang web học toán.
Bài tập 3 trang 78 SGK Toán 9 tập 2 - Cánh diều là một bài tập quan trọng giúp học sinh hiểu rõ hơn về hàm số bậc nhất và các ứng dụng của nó. Hy vọng rằng, với lời giải chi tiết và phương pháp giải hiệu quả mà chúng tôi đã trình bày, bạn sẽ có thể giải bài tập này một cách tự tin và đạt kết quả tốt nhất.