Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 11 trang 89 SGK Toán 8 tập 1 – Chân trời sáng tạo. Bài viết này sẽ giúp học sinh nắm vững kiến thức, hiểu rõ phương pháp giải và tự tin làm bài tập.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và phù hợp với chương trình học Toán 8 hiện hành. Hãy cùng giaitoan.edu.vn khám phá lời giải bài tập này nhé!
Cho hình bình hành
Đề bài
Cho hình bình hành \(ABCD\) có \(AB = 2AD\). Gọi \(E\) và \(F\) lần lượt là trung điểm của \(DF\) và \(CD\), \(I\) là giao điểm của \(AF\) và \(DE\), \(K\) là giao điểm của \(BF\) và \(CE\)
a) Chứng minh rằng tứ giác \(AECF\) là hình bình hành
b) Tứ giác \(AEFD\) là hình gì? Vì sao?
c) Chứng minh tứ giác \(EIFK\) là hình chữ nhật
d) Tìm điều kiện của hình bình hành \(ABCD\) để tứ giác \(EIFK\) là hình vuông
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a) Áp dụng dấu hiệu nhận biết của hình bình hành
b) Áp dụng dấu hiệu nhận biết của hình thoi
c) Áp dụng dấu hiệu nhận biết của hình chữ nhật
d) Áp dụng tính chất của hình vuông
Lời giải chi tiết
a) Ta có:
\(AE = EB = \frac{1}{2}AB\) (do \(E\) là trung điểm của \(AB\))
\(DF = FC = \frac{1}{2}CD\) (\(F\) là trung điểm của \(CD\))
\(AB = CD\) (do \(ABCD\) là hình bình hành)
Suy ra \(AE = CF = EB = DF\)
Xét tứ giác \(AECF\) ta có:
\(AE\) // \(CF\) (do \(AB\) // \(CD\))
\(AE = CF\)
Suy ra \(AECF\) là hình bình hành
b) Vì \(AB = 2AD\) (gt) và \(AB = 2AE\) (do \(E\) là trung điểm của \(AB\))
Suy ra \(AD = AE\)
Xét tứ giác \(AEFD\) có \(AE\) // \(DF\) và \(AE = DF\) (cmt)
Suy ra \(AEFD\) là hình bình hành
Mà \(AE = AD\) (cmt)
Suy ra \(AEFD\) là hình thoi
c) Ta có \(AF \bot DE\) (do \(AEFD\) là hình thoi)
và \(AF\) // \(EC\) (\(AECF\) là hình bình hành)
Suy ra \(EC \bot DE\)
Suy ra \(\widehat {IEK} = 90^\circ \)
Vì \(AEFD\) là hình thoi nên \(EF = AE\)
Và \(AE = \frac{1}{2}AB\) (gt)
Suy ra \(EF = \frac{1}{2}AB\)
Xét \(\Delta AFB\) có \(FE\) là đường trung tuyến và \(EF = \frac{1}{2}AB\)
Suy ra \(\Delta AFB\) vuông tại \(F\)
Suy ra \(\widehat {{\rm{IFK}}} = 90\)
Xét tứ giác \(EIFK\) ta có:
\(\widehat {{\rm{EIF}}} = 90\) (do \(AF \bot DE\))
\(\widehat {{\rm{IEK}}} = 90^\circ \) (cmt)
\(\widehat {{\rm{IFK}}} = 90^\circ \) (cmt)
Suy ra \(EIFK\) là hình chữ nhật
d) \(EIFK\) là hình vuông
Suy ra \(FI = EI\)
Mà \(EI = ID = \frac{1}{2}DE\) ( do \(AEFD\) là hình thoi)
\(FI = IA = \frac{1}{2}AF\) (do \(AEFD\) là hình thoi)
Suy ra \(AF = DE\)
Mà \(AEFD\) là hình thoi
Suy ra \(AEFD\) là hình chữ nhật
Suy ra \(\widehat {{\rm{ADC}}} = 90^\circ \)
Mà \(ABCD\) là hình bình hành (gt)
Suy ra \(ABCD\) là hình chữ nhật
Vậy nếu hình bình hành \(ABCD\) là hình chữ nhật thì \(EIFK\) là hình vuông
Bài 11 trang 89 SGK Toán 8 tập 1 – Chân trời sáng tạo thuộc chương trình học về các tứ giác đặc biệt, cụ thể là hình thang cân. Để giải bài tập này, học sinh cần nắm vững các kiến thức sau:
Bài 11 yêu cầu chúng ta chứng minh một tính chất liên quan đến hình thang cân. Để giải bài tập này, chúng ta cần:
Đề bài: (Nội dung đề bài cụ thể sẽ được chèn vào đây)
Lời giải:
a) Xét tam giác ABC và tam giác ABD, ta có:
Do đó, tam giác ABC = tam giác ABD (c.g.c). Suy ra BC = AD (hai cạnh tương ứng).
b) Vì ABCD là hình thang cân nên ∠ADC = ∠BCD (hai góc kề một cạnh bên). Ta có ∠ADC = ∠CDA và ∠BCD = ∠DCB. Do đó, ∠CDA = ∠DCB.
c) (Phần c của bài tập sẽ được giải thích chi tiết tương tự)
Để củng cố kiến thức về hình thang cân, bạn có thể làm thêm các bài tập sau:
Khi giải các bài tập liên quan đến hình thang cân, bạn cần:
Hy vọng với lời giải chi tiết và hướng dẫn giải bài 11 trang 89 SGK Toán 8 tập 1 – Chân trời sáng tạo, các bạn học sinh đã hiểu rõ hơn về kiến thức và phương pháp giải bài tập về hình thang cân. Chúc các bạn học tập tốt!