Bài 18 trang 41 SGK Toán 8 tập 1 thuộc chương trình Toán 8 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về các phép biến đổi đại số. Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập này.
Chúng tôi luôn cố gắng cung cấp những lời giải chính xác, đầy đủ và dễ tiếp cận nhất, giúp các em học sinh tự tin hơn trong quá trình học tập môn Toán.
Thực hiện các phép tính sau:
Đề bài
Thực hiện các phép tính sau:
a) \(\dfrac{{2{x^2} - 1}}{{x - 2}} + \dfrac{{ - {x^2} - 3}}{{x - 2}}\)
b) \(\dfrac{x}{{x + y}} + \dfrac{y}{{x - y}}\)
c) \(\dfrac{1}{{x - 1}} - \dfrac{2}{{{x^2} - 1}}\)
d) \(\dfrac{{x + 2}}{{{x^2} + xy}} - \dfrac{{y - 2}}{{xy + {y^2}}}\)
e) \(\dfrac{1}{{2{x^2} - 3x}} - \dfrac{1}{{4{x^2} - 9}}\)
g) \(\dfrac{{2x}}{{9 - {x^2}}} + \dfrac{1}{{x - 3}} - \dfrac{1}{{x + 3}}\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng quy tắc cộng, trừ phân thức
Lời giải chi tiết
a)
\(\dfrac{{2{x^2} - 1}}{{x - 2}} + \dfrac{{ - {x^2} - 3}}{{x - 2}}\)
\( = \dfrac{{{x^2} - 4}}{{x - 2}}\)
\(\begin{array}{l} = \dfrac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{x - 2}}\\ = x + 2\end{array}\)
b)
\(\dfrac{x}{{x + y}} + \dfrac{y}{{x - y}}\)
\(\begin{array}{l} = \dfrac{{x(x - y)}}{{(x + y)(x - y)}} + \dfrac{{y(x + y)}}{{(x - y)(x + y)}}\\ = \dfrac{{{x^2} - xy + xy + {y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}}\\ = \dfrac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}}\end{array}\)
c)
\(\dfrac{1}{{x - 1}} - \dfrac{2}{{{x^2} - 1}}\)\( = \dfrac{{x + 1}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} - \dfrac{2}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \dfrac{{x - 1}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \dfrac{1}{{x + 1}}\)
d)
\(\dfrac{{x + 2}}{{{x^2} + xy}} - \dfrac{{y - 2}}{{xy + {y^2}}}\)
\(\begin{array}{l} = \dfrac{{x + 2}}{{x(x + y)}} - \dfrac{{y - 2}}{{y(x + y)}}\\ = \dfrac{{\left( {x + 2} \right)y}}{{xy\left( {x + y} \right)}} - \dfrac{{\left( {y - 2} \right)x}}{{xy\left( {x + y} \right)}}\\ = \dfrac{{xy + 2y}}{{xy\left( {x + y} \right)}} - \dfrac{{xy - 2x}}{{xy\left( {x + y} \right)}}\\ = \dfrac{{2y + 2x}}{{xy\left( {x + y} \right)}}\\ = \dfrac{{2\left( {x + y} \right)}}{{xy\left( {x + y} \right)}}\\ = \dfrac{2}{{xy}}\end{array}\)
e)
\(\dfrac{1}{{2{x^2} - 3x}} - \dfrac{1}{{4{x^2} - 9}}\)
\(\begin{array}{l} = \dfrac{1}{{x\left( {2x - 3} \right)}} - \dfrac{1}{{\left( {2x - 3} \right)\left( {2x + 3} \right)}}\\ = \dfrac{{2x + 3}}{{x\left( {2x - 3} \right)\left( {2x + 3} \right)}} - \dfrac{x}{{x\left( {2x - 3} \right)\left( {2x + 3} \right)}}\\ = \dfrac{{x + 3}}{{x\left( {4{x^2} - 9} \right)}}\end{array}\)
g)
\(\dfrac{{2x}}{{9 - {x^2}}} + \dfrac{1}{{x - 3}} - \dfrac{1}{{x + 3}}\)
\(\begin{array}{l} = \dfrac{{ - 2x}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} + \dfrac{1}{{x - 3}} - \dfrac{1}{{x + 3}}\\ = \dfrac{{ - 2x}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} + \dfrac{{x + 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} - \dfrac{{x - 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\\ = \dfrac{{ - 2x + 6}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\\ = \dfrac{{ - 2\left( {x - 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\\ = \dfrac{{ - 2}}{{x + 3}}\end{array}\)
Bài 18 trang 41 SGK Toán 8 tập 1 – Chân trời sáng tạo yêu cầu học sinh vận dụng kiến thức về các phép biến đổi đại số để rút gọn biểu thức và tìm giá trị của biểu thức. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các quy tắc về dấu ngoặc, quy tắc chuyển vế, và các phép toán cơ bản.
Bài tập này thường bao gồm các biểu thức đại số chứa nhiều biến số và các phép toán khác nhau. Mục tiêu của bài tập là giúp học sinh:
Để giúp học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ cùng nhau phân tích và giải chi tiết từng bước:
Kiến thức và kỹ năng được học từ bài tập này có ứng dụng rộng rãi trong nhiều lĩnh vực khác nhau, bao gồm:
Bài 18 trang 41 SGK Toán 8 tập 1 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức và rèn luyện kỹ năng về các phép biến đổi đại số. Hy vọng với lời giải chi tiết và các mẹo giải được cung cấp, các em học sinh sẽ tự tin hơn trong quá trình học tập môn Toán.
Dạng bài tập | Phương pháp giải |
---|---|
Rút gọn biểu thức | Sử dụng các quy tắc biến đổi đại số |
Tìm giá trị của biểu thức | Thay giá trị của biến vào biểu thức và tính toán |