Bài 15 trang 60 SGK Toán 8 tập 2 thuộc chương trình Toán 8 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về các phép biến đổi đại số. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 15 trang 60 SGK Toán 8 tập 2, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Cho tứ giác
Đề bài
Cho tứ giác \(ABCD\) có \(AC\) và \(BD\) cắt nhau tại . Qua \(O\), kẻ đường thẳng song song với \(BC\) cắt \(AB\) tại \(E\), kẻ đường thẳng song song với \(CD\) cắt \(AD\) tại \(F\).
a) Chứng minh: \(EF//BD\);
b) Từ \(O\) kẻ đường thẳng song song với \(AB\) cắt \(BC\) tại \(G\) và đường thẳng song song với \(AD\) cắt \(CD\) tại \(H\). Chứng minh rằng \(CG.DH = BG.CH\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Định lí Thales
Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó các đoạn thẳng tương ứng tỉ lệ.
Định lí Thales đảo
Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.
Lời giải chi tiết
a) Xét tam giác \(ADC\) có \(OF//DC\), theo định lí Thales ta có:
\(\frac{{AF}}{{AD}} = \frac{{AO}}{{AC}}\) (1)
Xét tam giác \(ABC\) có \(OE//BC\), theo định lí Thales ta có:
\(\frac{{AE}}{{AB}} = \frac{{AO}}{{AC}}\) (2)
Từ (1) và (2) suy ra, \(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)
Xét tam giác \(ABD\) có:
\(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)
Theo định lí Thales đảo suy ra \(EF//BD\).
b) Xét tam giác \(ADC\) có \(OH//AD\), theo định lí Thales ta có:
\(\frac{{CH}}{{CD}} = \frac{{CO}}{{AC}}\) (3)
Xét tam giác \(ABC\) có \(OG//AB\), theo định lí Thales ta có:
\(\frac{{CG}}{{BC}} = \frac{{CO}}{{AC}}\) (4)
Từ (3) và (4) suy ra, \(\frac{{CH}}{{CD}} = \frac{{CG}}{{BC}}\)
Theo định lí Thales đảo suy ra \(GH//BD\).
Xét tam giác \(BCD\) có \(GH//BD\), theo định lí Thales ta có:
\(\frac{{CH}}{{DH}} = \frac{{CG}}{{BG}} \Rightarrow CH.BG = DH.CG\) (điều phải chứng minh).
Bài 15 trang 60 SGK Toán 8 tập 2 – Chân trời sáng tạo là một bài tập thuộc chương trình đại số lớp 8, tập trung vào việc vận dụng các kiến thức về phân thức đại số. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản như phân thức, điều kiện xác định của phân thức, các phép toán trên phân thức (cộng, trừ, nhân, chia) và các quy tắc rút gọn phân thức.
Bài 15 thường bao gồm các dạng bài tập sau:
Để giải bài 15 trang 60 SGK Toán 8 tập 2, chúng ta sẽ đi qua từng dạng bài tập cụ thể:
Để rút gọn phân thức, ta thực hiện các bước sau:
Ví dụ: Rút gọn phân thức A = (x2 - 1) / (x + 1)
Giải:
A = (x - 1)(x + 1) / (x + 1) = x - 1 (với x ≠ -1)
Để quy đồng mẫu số các phân thức, ta thực hiện các bước sau:
Ví dụ: Quy đồng mẫu số các phân thức 1/x và 1/x2
Giải:
MSC = x2
1/x = x/x2 và 1/x2 giữ nguyên
Các phép toán trên phân thức được thực hiện tương tự như các phép toán trên phân số. Tuy nhiên, cần lưu ý đến điều kiện xác định của phân thức.
Để giải phương trình chứa phân thức, ta thực hiện các bước sau:
Khi giải bài tập về phân thức, học sinh cần chú ý:
Bài 15 trang 60 SGK Toán 8 tập 2 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về phân thức đại số. Bằng cách nắm vững các khái niệm cơ bản và áp dụng các phương pháp giải phù hợp, học sinh có thể tự tin giải quyết các bài tập tương tự.
Giaitoan.edu.vn hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ hiểu rõ hơn về cách giải bài 15 trang 60 SGK Toán 8 tập 2 – Chân trời sáng tạo và đạt kết quả tốt trong môn Toán.