Bài 13 trang 42 SGK Toán 8 tập 2 thuộc chương trình Toán 8 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về các phép biến đổi đại số. Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập này.
Chúng tôi luôn cố gắng cung cấp những lời giải chính xác, đầy đủ và dễ tiếp cận nhất, giúp các em học sinh tự tin hơn trong quá trình học tập môn Toán.
Một ô tô dự định đi từ A đến B với tốc độ 50 (km/h). Sau khi đi được (frac{2}{3}) quãng đường với vận tốc đó, vì đường xấu nên người lái xe phải giảm tốc độ còn 40 (km/h) trên quãng đường còn lại. Vì thế ô tô đã đến B chậm hơn dự định 30 phút. Tính chiều dài quãng đường AB.
Đề bài
Một ô tô dự định đi từ A đến B với tốc độ 50 \(km/h\). Sau khi đi được \(\frac{2}{3}\) quãng đường với vận tốc đó, vì đường xấu nên người lái xe phải giảm tốc độ còn 40 \(km/h\) trên quãng đường còn lại. Vì thế ô tô đã đến B chậm hơn dự định 30 phút. Tính chiều dài quãng đường AB.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Giải bài toán bằng cách lập phương trình ta thực hiện 3 bước sau:
Bước 1: Lập phương trình
- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.
- Biểu diễn các đại lượng chưa biết theo ẩn và theo các đại lượng đã biết.
- Lập phương trình biểu diễn mối quan hệ giữa các đại lượng.
Bước 2: Giải phương trình.
Bước 3: Trả lời
- Kiểm tra xem trong các nghiệm của phương trình , nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không.
- Kết luận.
Chú ý: Ta có công thức biểu diễn quãng đường, vận tốc, thời gian như sau:
\(s = vt\) với \(s\) là quãng đường; \(v\) là vận tốc; \(t\) là thời gian.
Lời giải chi tiết
Gọi chiều dài quãng đường AB là \(x\left( {km} \right)\). Điều kiện \(x > 0\).
Vì ban đầu xe dự định đi với vận tốc 50 \(km/h\) trên suốt quãng đường nên thời gian dự định đi hết quãng đường AB là \(\frac{x}{{50}}\) (giờ).
\(\frac{2}{3}\) quãng đường đầu tiên là \(\frac{2}{3}x\) đi với vận tốc 50 \(km/h\) nên thời gian đi hết \(\frac{2}{3}\) quãng đường đầu tiên là \(\frac{2}{3}x:50 = \frac{2}{{150}}x\) (giờ).
\(\frac{1}{3}\) quãng đường còn lại là \(\frac{1}{3}x\) đi với vận tốc 40 \(km/h\) nên thời gian đi hết \(\frac{1}{3}\) quãng đường sau là \(\frac{1}{3}x:40 = \frac{1}{{120}}x\) (giờ).
Tổng thời gian đi thực tế là \(\frac{2}{{150}}x + \frac{1}{{120}}x\) (giờ)
Đổi 30 phút = \(\frac{1}{2}\) giờ
Vì ô tô đến B chậm hơn dự định \(\frac{1}{2}\) giờ nên ta có phương trình:
\(\frac{2}{{150}}x + \frac{1}{{120}}x - \frac{x}{{50}} = \frac{1}{2}\)
\(\frac{{2.4}}{{150.4}}x + \frac{{1.5}}{{120.5}}x - \frac{{x.12}}{{50.12}} = \frac{{1.300}}{{2.300}}\)
\(\frac{{8x}}{{150.4}} + \frac{{5x}}{{120.5}} - \frac{{12x}}{{50.12}} = \frac{{300}}{{600}}\)
\(8x + 5x - 12x = 300\)
\(x = 300\) (thỏa mãn điều kiện)
Vậy độ dài quãng đường AB là 300 \(km\).
Bài 13 trang 42 SGK Toán 8 tập 2 – Chân trời sáng tạo yêu cầu học sinh vận dụng kiến thức về các phép biến đổi đại số, cụ thể là các quy tắc cộng, trừ, nhân, chia đa thức để thực hiện các phép tính và rút gọn biểu thức. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản và thực hành thường xuyên.
Bài tập này thường bao gồm các biểu thức đại số chứa các biến số và các phép toán. Học sinh cần thực hiện các bước sau để giải bài tập:
(Ví dụ, giả sử bài tập là: Rút gọn biểu thức: 3x + 2y - x + 5y)
Giải:
3x + 2y - x + 5y = (3x - x) + (2y + 5y) = 2x + 7y
Vậy, biểu thức được rút gọn là 2x + 7y.
Ngoài bài tập rút gọn biểu thức, học sinh còn có thể gặp các dạng bài tập khác liên quan đến các phép biến đổi đại số, như:
Để giải các dạng bài tập này, học sinh cần nắm vững các kiến thức cơ bản và thực hành thường xuyên. Ngoài ra, học sinh cũng nên tham khảo các tài liệu tham khảo và các bài giải mẫu để hiểu rõ hơn về phương pháp giải.
Để học tập môn Toán 8 hiệu quả, học sinh nên:
Giaitoan.edu.vn là một nền tảng học tập trực tuyến uy tín, cung cấp các giải pháp học tập toàn diện cho học sinh môn Toán 8. Chúng tôi cung cấp:
Hãy truy cập Giaitoan.edu.vn ngay hôm nay để khám phá những lợi ích tuyệt vời mà chúng tôi mang lại!
Bài 13 trang 42 SGK Toán 8 tập 2 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về các phép biến đổi đại số. Hy vọng với lời giải chi tiết và các phương pháp giải được trình bày trong bài viết này, các em học sinh sẽ tự tin hơn trong quá trình học tập môn Toán.