Chào mừng các em học sinh đến với lời giải chi tiết Bài 8 trang 28 SGK Toán 8 tập 2 – Chân trời sáng tạo trên giaitoan.edu.vn. Bài viết này sẽ cung cấp đáp án, phương pháp giải và giải thích rõ ràng từng bước để giúp các em hiểu bài và làm bài tập một cách hiệu quả.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng cao, hỗ trợ các em trong quá trình học tập môn Toán.
Cho các hàm số bậc nhất: (y = dfrac{1}{3}x + 2); (y = - dfrac{1}{3}x + 2);(y = - 3x + 2). Kết luận nào sau đây đúng?
Đề bài
Cho các hàm số bậc nhất: \(y = \dfrac{1}{3}x + 2\); \(y = - \dfrac{1}{3}x + 2\);\(y = - 3x + 2\). Kết luận nào sau đây đúng?
A. Đồ thị của các hàm số trên là các đường thẳng song song với nhau.
B. Đồ thị của các hàm số trên là các đường thẳng đi qua gốc tọa độ.
C. Đồ thị của các hàm số trên là các đường thẳng trùng nhau.
D. Đồ thị của các hàm số trên là các đường thẳng cắt nhau tại một điểm.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
- Hai đường thẳng phân biệt song song với nhau khi chúng có hệ số góc bằng nhau.
- Hai đường thẳng trùng nhau nếu chúng có hệ số góc bằng nhau và cắt trục tung tại cùng một điểm.
- Hai đường thẳng cắt nhau nếu chúng có hệ số góc khác nhau.
- Hai đường thẳng cắt nhau tại một điểm nếu điểm đó thuộc cả hai đường thẳng.
- Đường thẳng \(y = ax + b\) đi qua gốc tọa độ nếu \(b = 0\).
Lời giải chi tiết
Đáp án đúng là D
- Đồ thị hàm số \(y = \dfrac{1}{3}x + 2\) là đường thẳng có hệ số góc là \(a = \dfrac{1}{3}\).
- Đồ thị hàm số \(y = - \dfrac{1}{3}x + 2\) là đường thẳng có hệ số góc là \(a = - \dfrac{1}{3}\).
- Đồ thị hàm số \(y = - 3x + 2\) là đường thẳng có hệ số góc là \(a = - 3\).
Vì cả ba đường thẳng đều có hệ số góc khác nhau nên chúng cắt nhau.
- Đồ thị hàm số \(y = \dfrac{1}{3}x + 2\) cắt trục tung tại điểm \(A\left( {0;2} \right)\).
- Đồ thị hàm số \(y = - \dfrac{1}{3}x + 2\) cắt trục tung tại điểm \(A\left( {0;2} \right)\)
- Đồ thị hàm số \(y = - 3x + 2\) cắt trục tung tại điểm \(A\left( {0;2} \right)\)
Do đó điểm \(A\left( {0;2} \right)\) là giao điểm của ba đồ thị hàm số.
Vậy đồ thị của các hàm số trên là các đường thẳng cắt nhau tại một điểm.
Bài 8 trang 28 SGK Toán 8 tập 2 – Chân trời sáng tạo thuộc chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức đã học về hình hộp chữ nhật và hình lập phương để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải nắm vững các công thức tính diện tích xung quanh, diện tích toàn phần và thể tích của các hình này.
Bài 8 bao gồm các câu hỏi và bài tập khác nhau, yêu cầu học sinh:
Để tính diện tích xung quanh của hình hộp chữ nhật, ta sử dụng công thức: Diện tích xung quanh = 2 * (chiều dài + chiều rộng) * chiều cao. Trong bài toán này, ta cần xác định chính xác chiều dài, chiều rộng và chiều cao của hình hộp chữ nhật để áp dụng công thức một cách chính xác.
Diện tích toàn phần của hình hộp chữ nhật được tính bằng công thức: Diện tích toàn phần = Diện tích xung quanh + 2 * Diện tích đáy. Việc tính toán diện tích đáy là bước quan trọng để đảm bảo kết quả chính xác.
Thể tích của hình hộp chữ nhật được tính bằng công thức: Thể tích = Chiều dài * Chiều rộng * Chiều cao. Đảm bảo các kích thước được sử dụng đúng đơn vị đo.
Đối với hình lập phương, tất cả các cạnh đều bằng nhau. Do đó, công thức tính diện tích xung quanh, diện tích toàn phần và thể tích được đơn giản hóa:
Giả sử ta có một hình hộp chữ nhật với chiều dài 5cm, chiều rộng 3cm và chiều cao 4cm. Áp dụng các công thức trên, ta có:
Khi giải các bài tập về hình hộp chữ nhật và hình lập phương, cần chú ý:
Các kiến thức về hình hộp chữ nhật và hình lập phương có ứng dụng rất lớn trong thực tế, ví dụ như:
Bài 8 trang 28 SGK Toán 8 tập 2 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về hình hộp chữ nhật và hình lập phương. Hy vọng với lời giải chi tiết và hướng dẫn giải trên, các em sẽ hiểu bài và làm bài tập một cách hiệu quả. Chúc các em học tốt!