Logo Header
  1. Môn Toán
  2. Giải mục 3 trang 9 SGK Toán 8 tập 1– Chân trời sáng tạo

Giải mục 3 trang 9 SGK Toán 8 tập 1– Chân trời sáng tạo

Giải mục 3 trang 9 SGK Toán 8 tập 1 – Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 8 tập 1 – Chân trời sáng tạo. Mục 3 trang 9 là một phần quan trọng trong chương trình học, đòi hỏi học sinh phải nắm vững kiến thức về các phép toán cơ bản và cách áp dụng vào giải quyết bài tập.

Chúng tôi hiểu rằng việc tự học đôi khi gặp nhiều khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải chi tiết, kèm theo các bước giải thích rõ ràng, giúp bạn dễ dàng tiếp thu kiến thức và tự tin giải các bài tập tương tự.

Cho hai hình hộp chữ nhật A và B có các kích thước như hình 3. a) Tính tổng thể tích của hình hộp chữ nhật A và B. b) Viết biểu thức biểu diễn sự chênh lệch thể tích của A và B.

Thực hành 3

    Video hướng dẫn giải

    Mỗi cặp đơn thức sau có đồng dạng không? Nếu có, hãy tìm tổng và hiệu của chúng.

    a) \(xy\) và \( - 6xy\)

    b) \(2xy\) và \(x{y^2}\)

    c) \( - 4yz{x^2}\) và \(4{x^2}yz\)

    Phương pháp giải:

    Hai đơn thức đồng dạng là hai đơn thức có hệ số khác \(0\) và có cùng phần biến

    Để cộng, trừ (hay tìm tổng, hiệu) hai đơn thức đồng dạng, ta cộng, trừ hệ số của chúng là giữ nguyên phần biến.

    Lời giải chi tiết:

    a) \(xy\) và \( - 6xy\) là hai đơn thức đồng dạng vì có hệ số khác \(0\) và có cùng phần biến là \(xy\).

    Ta có:

    \(xy + \left( { - 6xy} \right) = xy - 6xy = \left( {1 - 6} \right)xy = - 5xy\)

    \(xy - \left( { - 6xy} \right) = xy + 6xy = \left( {1 + 6} \right)xy = 7xy\)

    b) \(2xy\) và \(x{y^2}\) không là hai đơn thức đồng dạng.

    c) \( - 4yz{x^2}\) và \(4{x^2}yz\) là hai đơn thức đồng dạng vì có hệ số khác 0 và có cùng phần biến là \({x^2}yz\).

    Ta có:

    \( - 4yz{x^2} + 4{x^2}yz = \left( { - 4 + 4} \right){x^2}yz = 0\)

    \( - 4yz{x^2} - 4{x^2} = \left( { - 4 - 4} \right){x^2}yz = - 8{x^2}yz\)

    Lựa chọn câu để xem lời giải nhanh hơn
    • HĐ3
    • Thực hành 3

    Video hướng dẫn giải

    Cho hai hình hộp chữ nhật A và B có các kích thước như hình 3.

    a) Tính tổng thể tích của hình hộp chữ nhật A và B.

    b) Viết biểu thức biểu diễn sự chênh lệch thể tích của A và B.

    Giải mục 3 trang 9 SGK Toán 8 tập 1– Chân trời sáng tạo 1

    Phương pháp giải:

    Thể tích hình hộp chữ nhật là lượng không gian mà hình chiếm, được tính bằng tích của diện tích đáy và chiều cao: \(V = a.b.h\), trong đó \(a\), \(b\), \(h\), \(V\) lần lượt là chiều dài, chiều rộng, chiều cao và thể tích của hình hộp chữ nhật.

    Lời giải chi tiết:

    a) Thể tích của hình hộp chữ nhật A là: \({V_A} = 3x.y.x = 3.{x^2}y\)

    Thể tích của hình hộp chữ nhật B là: \({V_B} = 2x.x.y = 2{x^2}y\)

    Tổng thể tích của hình hộp chữ nhật A và B là: \(3{x^2}y + 2{x^2}y = \left( {3 + 2} \right).{x^2}y = 5{x^2}y\)

    b) Biểu thức biểu diễn sự chênh lệch thể tích của A và B là: \(3{x^2}y - 2{x^2}y = \left( {3 - 2} \right).{x^2}y = {x^2}y\)

    Video hướng dẫn giải

    Mỗi cặp đơn thức sau có đồng dạng không? Nếu có, hãy tìm tổng và hiệu của chúng.

    a) \(xy\) và \( - 6xy\)

    b) \(2xy\) và \(x{y^2}\)

    c) \( - 4yz{x^2}\) và \(4{x^2}yz\)

    Phương pháp giải:

    Hai đơn thức đồng dạng là hai đơn thức có hệ số khác \(0\) và có cùng phần biến

    Để cộng, trừ (hay tìm tổng, hiệu) hai đơn thức đồng dạng, ta cộng, trừ hệ số của chúng là giữ nguyên phần biến.

    Lời giải chi tiết:

    a) \(xy\) và \( - 6xy\) là hai đơn thức đồng dạng vì có hệ số khác \(0\) và có cùng phần biến là \(xy\).

    Ta có:

    \(xy + \left( { - 6xy} \right) = xy - 6xy = \left( {1 - 6} \right)xy = - 5xy\)

    \(xy - \left( { - 6xy} \right) = xy + 6xy = \left( {1 + 6} \right)xy = 7xy\)

    b) \(2xy\) và \(x{y^2}\) không là hai đơn thức đồng dạng.

    c) \( - 4yz{x^2}\) và \(4{x^2}yz\) là hai đơn thức đồng dạng vì có hệ số khác 0 và có cùng phần biến là \({x^2}yz\).

    Ta có:

    \( - 4yz{x^2} + 4{x^2}yz = \left( { - 4 + 4} \right){x^2}yz = 0\)

    \( - 4yz{x^2} - 4{x^2} = \left( { - 4 - 4} \right){x^2}yz = - 8{x^2}yz\)

    HĐ3

      Video hướng dẫn giải

      Cho hai hình hộp chữ nhật A và B có các kích thước như hình 3.

      a) Tính tổng thể tích của hình hộp chữ nhật A và B.

      b) Viết biểu thức biểu diễn sự chênh lệch thể tích của A và B.

      Giải mục 3 trang 9 SGK Toán 8 tập 1– Chân trời sáng tạo 0 1

      Phương pháp giải:

      Thể tích hình hộp chữ nhật là lượng không gian mà hình chiếm, được tính bằng tích của diện tích đáy và chiều cao: \(V = a.b.h\), trong đó \(a\), \(b\), \(h\), \(V\) lần lượt là chiều dài, chiều rộng, chiều cao và thể tích của hình hộp chữ nhật.

      Lời giải chi tiết:

      a) Thể tích của hình hộp chữ nhật A là: \({V_A} = 3x.y.x = 3.{x^2}y\)

      Thể tích của hình hộp chữ nhật B là: \({V_B} = 2x.x.y = 2{x^2}y\)

      Tổng thể tích của hình hộp chữ nhật A và B là: \(3{x^2}y + 2{x^2}y = \left( {3 + 2} \right).{x^2}y = 5{x^2}y\)

      b) Biểu thức biểu diễn sự chênh lệch thể tích của A và B là: \(3{x^2}y - 2{x^2}y = \left( {3 - 2} \right).{x^2}y = {x^2}y\)

      Vững vàng kiến thức, bứt phá điểm số Toán 8! Đừng bỏ lỡ Giải mục 3 trang 9 SGK Toán 8 tập 1– Chân trời sáng tạo đặc sắc thuộc chuyên mục sgk toán 8 trên môn toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát từng chi tiết chương trình sách giáo khoa, con bạn sẽ củng cố kiến thức nền tảng vững chắc và dễ dàng chinh phục các dạng bài khó. Phương pháp học trực quan, logic sẽ giúp các em tối ưu hóa quá trình ôn luyện và đạt hiệu quả học tập tối đa!

      Giải mục 3 trang 9 SGK Toán 8 tập 1 – Chân trời sáng tạo: Hướng dẫn chi tiết và dễ hiểu

      Mục 3 trang 9 SGK Toán 8 tập 1 – Chân trời sáng tạo tập trung vào việc ôn tập và củng cố các kiến thức về phép cộng, trừ, nhân, chia số hữu tỉ. Đây là nền tảng quan trọng để học sinh tiếp thu các kiến thức nâng cao hơn trong chương trình Toán 8.

      Nội dung chính của Mục 3 trang 9

      Mục 3 trang 9 bao gồm các bài tập vận dụng các phép toán cơ bản trên số hữu tỉ vào các tình huống thực tế. Các bài tập này giúp học sinh rèn luyện kỹ năng tính toán, tư duy logic và khả năng giải quyết vấn đề.

      Các dạng bài tập thường gặp

      • Dạng 1: Tính toán các biểu thức chứa số hữu tỉ
      • Đây là dạng bài tập cơ bản nhất, yêu cầu học sinh thực hiện các phép toán cộng, trừ, nhân, chia số hữu tỉ theo đúng thứ tự ưu tiên.

        Ví dụ: Tính giá trị của biểu thức: (1/2) + (3/4) - (5/8)

        Giải: (1/2) + (3/4) - (5/8) = (4/8) + (6/8) - (5/8) = (4+6-5)/8 = 5/8

      • Dạng 2: Giải các bài toán có liên quan đến số hữu tỉ
      • Dạng bài tập này yêu cầu học sinh vận dụng kiến thức về số hữu tỉ để giải quyết các bài toán thực tế, ví dụ như bài toán về diện tích, chu vi, thời gian, vận tốc,...

        Ví dụ: Một mảnh đất hình chữ nhật có chiều dài 12m và chiều rộng 8m. Tính diện tích của mảnh đất đó.

        Giải: Diện tích của mảnh đất hình chữ nhật là: 12m * 8m = 96m2

      • Dạng 3: Tìm x trong các phương trình chứa số hữu tỉ
      • Dạng bài tập này yêu cầu học sinh sử dụng các phép toán để biến đổi phương trình và tìm ra giá trị của x.

        Ví dụ: Giải phương trình: x + (1/3) = (5/6)

        Giải: x = (5/6) - (1/3) = (5/6) - (2/6) = 3/6 = 1/2

      Lời khuyên khi giải bài tập

      1. Nắm vững các quy tắc về phép toán trên số hữu tỉ: Quy tắc cộng, trừ, nhân, chia số hữu tỉ là nền tảng để giải quyết các bài tập.
      2. Biến đổi biểu thức một cách cẩn thận: Tránh các lỗi sai do nhầm lẫn trong các phép toán.
      3. Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.
      4. Luyện tập thường xuyên: Luyện tập thường xuyên sẽ giúp bạn nắm vững kiến thức và rèn luyện kỹ năng giải bài tập.

      Tại sao nên chọn giaitoan.edu.vn để học Toán 8?

      Giaitoan.edu.vn là một website học Toán online uy tín, cung cấp:

      • Lời giải chi tiết và dễ hiểu: Các lời giải được biên soạn bởi đội ngũ giáo viên giàu kinh nghiệm, giúp bạn dễ dàng tiếp thu kiến thức.
      • Bài tập đa dạng và phong phú: Chúng tôi cung cấp nhiều bài tập khác nhau, giúp bạn rèn luyện kỹ năng giải bài tập.
      • Giao diện thân thiện và dễ sử dụng: Website được thiết kế với giao diện thân thiện, giúp bạn dễ dàng tìm kiếm và học tập.
      • Hỗ trợ trực tuyến 24/7: Chúng tôi luôn sẵn sàng hỗ trợ bạn khi gặp khó khăn trong quá trình học tập.

      Hãy truy cập giaitoan.edu.vn ngay hôm nay để khám phá thêm nhiều tài liệu học Toán 8 hữu ích và đạt kết quả cao trong học tập!

      Bảng tóm tắt các quy tắc phép toán trên số hữu tỉ

      Phép toánQuy tắc
      CộngNếu hai số hữu tỉ có cùng mẫu số thì cộng các tử số và giữ nguyên mẫu số. Nếu hai số hữu tỉ có khác mẫu số thì quy đồng mẫu số rồi cộng.
      TrừNếu hai số hữu tỉ có cùng mẫu số thì trừ các tử số và giữ nguyên mẫu số. Nếu hai số hữu tỉ có khác mẫu số thì quy đồng mẫu số rồi trừ.
      NhânNhân các tử số với nhau và nhân các mẫu số với nhau.
      ChiaChia số hữu tỉ thứ nhất cho số hữu tỉ thứ hai là nhân số hữu tỉ thứ nhất với nghịch đảo của số hữu tỉ thứ hai.

      Tài liệu, đề thi và đáp án Toán 8