Giaitoan.edu.vn xin giới thiệu lời giải chi tiết mục 2 trang 53 SGK Toán 8 tập 2 – Chân trời sáng tạo. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các bài giải Toán 8 tập 2, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.
Cho
Video hướng dẫn giải
Hãy tính khoảng cách \(BC\) trong phần câu hỏi khởi động trang 52.
Phương pháp giải:
- Đường trung bình của tam giác là đoạn thẳng nối hai trung điểm của tam giác.
- Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.
Lời giải chi tiết:
Vì \(BD = DA \Rightarrow D\) là trung điểm của \(AB\);
Vì \(EC = EA \Rightarrow E\) là trung điểm của \(AC\).
Do đó, \(DE\) là đường trung bình của tam giác \(ABC\)
\( \Rightarrow \left\{ \begin{array}{l}DE//BC\\DE = \frac{1}{2}BC\end{array} \right.\) (tính chất đường trung bình).
\( \Rightarrow 45 = \frac{1}{2}BC \Leftrightarrow BC = 45.2 = 90\left( m \right)\)
Vậy khoảng các của hai điểm \(B\) và \(C\) là 90 m.
Video hướng dẫn giải
Cho \(M,N\) lần lượt là trung điểm của hai cạnh \(AB;AC\) của tam giác \(ABC\).
a) Tính các tỉ số \(\frac{{AM}}{{AB}},\frac{{AN}}{{AC}}\);
b) Cứng mình \(MN//BC\);
c) Chứng minh \(\frac{{MN}}{{BC}} = \frac{1}{2}\).
Phương pháp giải:
- Tỉ số giữa hai đoạn thẳng là tỉ số độ dài của hai đoạn thẳng khi cùng đơn vị đo.
- Định lí Thales đảo
Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.
- Hệ quả định lí Thales
Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh thứ ba thì tạo ra một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.
Lời giải chi tiết:
a) Vì \(AM = MB \Rightarrow M\) là trung điểm của \(AB\) (do \(M\) thuộc \(AB\))
\( \Rightarrow AM = \frac{1}{2}AB \Leftrightarrow \frac{{AM}}{{AB}} = \frac{1}{2}\);
Vì \(AN = NC \Rightarrow N\) là trung điểm của \(AC\) (do \(N\) thuộc \(AC\))
\( \Rightarrow AN = \frac{1}{2}AC \Leftrightarrow \frac{{AN}}{{AC}} = \frac{1}{2}\).
b) Vì \(\frac{{AM}}{{AB}} = \frac{1}{2};\frac{{AN}}{{AC}} = \frac{1}{2} \Rightarrow \frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\).
Xét tam giác \(ABC\) có \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\) nên áp dụng định lí Thales đảo ta được \(MN//BC\).
c) Xét tam giác \(ABC\) có \(MN//BC\) nên áp dụng hệ quả định lí Thales ta được \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\)
Mà \(\frac{{AM}}{{AB}} = \frac{1}{2} \Rightarrow \frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}} = \frac{1}{2}\).
Vậy \(\frac{{MN}}{{BC}} = \frac{1}{2}\) (điều phải chứng minh).
Video hướng dẫn giải
Trong Hình 8, cho biết \(JK = 10cm;DE = 6,5cm;EL = 3,7cm\). Tính \(DJ;EF;DF;KI\).
Phương pháp giải:
Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.
Lời giải chi tiết:
Vì \(DJ = KD \Rightarrow D\) là trung điểm của \(JK\)
\( \Rightarrow DJ = DK = \frac{1}{2}JK = \frac{1}{2}.10 = 5cm\);
Vì \(EJ = EL \Rightarrow E\) là trung điểm của \(JL\).
\( \Rightarrow 2EL = JL \Leftrightarrow JL = 2.3,7 = 7,4cm\).
Vì \(KF = LF \Rightarrow F\) là trung điểm của \(KL\).
- Vì \(D\) là trung điểm của \(JK\); \(E\) là trung điểm của \(JL\) nên \(ED\) là đường trung bình của tam giác \(JLK\)\( \Rightarrow ED = \frac{1}{2}KL\) (tính chất đường trung bình)
Do đó, \(KL = 2ED = 2.6,5 = 13cm\);
- Vì \(E\) là trung điểm của \(JL\); \(F\) là trung điểm của \(KL\) nên \(EF\) là đường rung bình của tam giác \(JLK\)\( \Rightarrow EF = \frac{1}{2}JK\) (tính chất đường trung bình)
\( \Leftrightarrow EF = \frac{1}{2}.10 = 5cm\).
- Vì \(D\) là trung điểm của \(KJ\); \(F\) là trung điểm của \(KL\) nên \(DF\) là đường rung bình của tam giác \(JLK\)\( \Rightarrow DF = \frac{1}{2}JL\) (tính chất đường trung bình)
\( \Leftrightarrow DF = \frac{1}{2}.7,4 = 3,7cm\).
Vậy \(DJ = 5cm;EF = 5cm;DF = 3,7cm;KL = 13cm\)
Video hướng dẫn giải
Cho \(M,N\) lần lượt là trung điểm của hai cạnh \(AB;AC\) của tam giác \(ABC\).
a) Tính các tỉ số \(\frac{{AM}}{{AB}},\frac{{AN}}{{AC}}\);
b) Cứng mình \(MN//BC\);
c) Chứng minh \(\frac{{MN}}{{BC}} = \frac{1}{2}\).
Phương pháp giải:
- Tỉ số giữa hai đoạn thẳng là tỉ số độ dài của hai đoạn thẳng khi cùng đơn vị đo.
- Định lí Thales đảo
Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.
- Hệ quả định lí Thales
Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh thứ ba thì tạo ra một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.
Lời giải chi tiết:
a) Vì \(AM = MB \Rightarrow M\) là trung điểm của \(AB\) (do \(M\) thuộc \(AB\))
\( \Rightarrow AM = \frac{1}{2}AB \Leftrightarrow \frac{{AM}}{{AB}} = \frac{1}{2}\);
Vì \(AN = NC \Rightarrow N\) là trung điểm của \(AC\) (do \(N\) thuộc \(AC\))
\( \Rightarrow AN = \frac{1}{2}AC \Leftrightarrow \frac{{AN}}{{AC}} = \frac{1}{2}\).
b) Vì \(\frac{{AM}}{{AB}} = \frac{1}{2};\frac{{AN}}{{AC}} = \frac{1}{2} \Rightarrow \frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\).
Xét tam giác \(ABC\) có \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\) nên áp dụng định lí Thales đảo ta được \(MN//BC\).
c) Xét tam giác \(ABC\) có \(MN//BC\) nên áp dụng hệ quả định lí Thales ta được \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\)
Mà \(\frac{{AM}}{{AB}} = \frac{1}{2} \Rightarrow \frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}} = \frac{1}{2}\).
Vậy \(\frac{{MN}}{{BC}} = \frac{1}{2}\) (điều phải chứng minh).
Video hướng dẫn giải
Trong Hình 8, cho biết \(JK = 10cm;DE = 6,5cm;EL = 3,7cm\). Tính \(DJ;EF;DF;KI\).
Phương pháp giải:
Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.
Lời giải chi tiết:
Vì \(DJ = KD \Rightarrow D\) là trung điểm của \(JK\)
\( \Rightarrow DJ = DK = \frac{1}{2}JK = \frac{1}{2}.10 = 5cm\);
Vì \(EJ = EL \Rightarrow E\) là trung điểm của \(JL\).
\( \Rightarrow 2EL = JL \Leftrightarrow JL = 2.3,7 = 7,4cm\).
Vì \(KF = LF \Rightarrow F\) là trung điểm của \(KL\).
- Vì \(D\) là trung điểm của \(JK\); \(E\) là trung điểm của \(JL\) nên \(ED\) là đường trung bình của tam giác \(JLK\)\( \Rightarrow ED = \frac{1}{2}KL\) (tính chất đường trung bình)
Do đó, \(KL = 2ED = 2.6,5 = 13cm\);
- Vì \(E\) là trung điểm của \(JL\); \(F\) là trung điểm của \(KL\) nên \(EF\) là đường rung bình của tam giác \(JLK\)\( \Rightarrow EF = \frac{1}{2}JK\) (tính chất đường trung bình)
\( \Leftrightarrow EF = \frac{1}{2}.10 = 5cm\).
- Vì \(D\) là trung điểm của \(KJ\); \(F\) là trung điểm của \(KL\) nên \(DF\) là đường rung bình của tam giác \(JLK\)\( \Rightarrow DF = \frac{1}{2}JL\) (tính chất đường trung bình)
\( \Leftrightarrow DF = \frac{1}{2}.7,4 = 3,7cm\).
Vậy \(DJ = 5cm;EF = 5cm;DF = 3,7cm;KL = 13cm\)
Video hướng dẫn giải
Hãy tính khoảng cách \(BC\) trong phần câu hỏi khởi động trang 52.
Phương pháp giải:
- Đường trung bình của tam giác là đoạn thẳng nối hai trung điểm của tam giác.
- Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.
Lời giải chi tiết:
Vì \(BD = DA \Rightarrow D\) là trung điểm của \(AB\);
Vì \(EC = EA \Rightarrow E\) là trung điểm của \(AC\).
Do đó, \(DE\) là đường trung bình của tam giác \(ABC\)
\( \Rightarrow \left\{ \begin{array}{l}DE//BC\\DE = \frac{1}{2}BC\end{array} \right.\) (tính chất đường trung bình).
\( \Rightarrow 45 = \frac{1}{2}BC \Leftrightarrow BC = 45.2 = 90\left( m \right)\)
Vậy khoảng các của hai điểm \(B\) và \(C\) là 90 m.
Mục 2 trang 53 SGK Toán 8 tập 2 – Chân trời sáng tạo thường xoay quanh các bài toán liên quan đến các kiến thức đã học trong chương. Để giải quyết các bài toán này một cách hiệu quả, học sinh cần nắm vững lý thuyết, hiểu rõ các định nghĩa và công thức liên quan. Bài viết này sẽ cung cấp lời giải chi tiết cho từng bài toán trong mục 2, đồng thời phân tích cách tiếp cận và các bước giải cụ thể.
Mục 2 trang 53 thường bao gồm các dạng bài tập sau:
Đề bài: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Tính độ dài cạnh BC.
Lời giải:
Áp dụng định lý Pitago vào tam giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2
BC2 = 32 + 42 = 9 + 16 = 25
BC = √25 = 5cm
Vậy, độ dài cạnh BC là 5cm.
Đề bài: Cho tứ giác ABCD có góc A = 60o, góc B = 120o, góc C = 80o. Tính góc D.
Lời giải:
Tổng các góc trong một tứ giác bằng 360o. Do đó:
Góc D = 360o - (góc A + góc B + góc C)
Góc D = 360o - (60o + 120o + 80o)
Góc D = 360o - 260o = 100o
Vậy, góc D là 100o.
Để học Toán 8 tập 2 hiệu quả, bạn có thể tham khảo một số mẹo sau:
Ngoài sách giáo khoa, bạn có thể tham khảo thêm các tài liệu sau:
Hy vọng bài viết này đã cung cấp cho bạn lời giải chi tiết và hữu ích cho mục 2 trang 53 SGK Toán 8 tập 2 – Chân trời sáng tạo. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!