Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài tập mục 2 trang 37, 38 SGK Toán 8 tập 1 – Chân trời sáng tạo. Bài viết này cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 8, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.
Máy A xát được (x) tấn gạo trong (a) giờ, máy B xát được (y) tấn gạo trong (b) giờ. a) Viết các biểu thức biểu thị số tấn gạo mỗi máy xát được trong 1 giờ (gọi là công suất của máy) b) Công suất của máy A gấp bao nhiêu lần số máy B? Viết biểu thức biểu thị số lần này. c) Tính giá trị của biểu thức ở câu b) khi (x = 3), (y = 2), (b = 4)
Video hướng dẫn giải
Máy A xát được \(x\) tấn gạo trong \(a\) giờ, máy B xát được \(y\) tấn gạo trong \(b\) giờ.
a) Viết các biểu thức biểu thị số tấn gạo mỗi máy xát được trong 1 giờ (gọi là công suất của máy)
b) Công suất của máy A gấp bao nhiêu lần số máy B? Viết biểu thức biểu thị số lần này.
c) Tính giá trị của biểu thức ở câu b) khi \(x = 3\), \(y = 2\), \(b = 4\)
Phương pháp giải:
Thực hiện phép tính chia để trả lời câu hỏi a, b
Lời giải chi tiết:
a) Biểu thức biểu thị số tấn gạo máy A xát được trong 1 giờ là: \(x:a = \dfrac{x}{a}\) (tấn)
Biểu thức biểu thị số tấn gạo máy B xát được trong 1 giờ là: \(y:b = \dfrac{y}{b}\) (tấn)
b) Công suất máy A gấp số lần máy B là: \(\dfrac{x}{a}:\dfrac{y}{b} = \dfrac{x}{a} \cdot \dfrac{b}{y} = \dfrac{{bx}}{{ay}}\) (lần)
c) Khi \(x = 3\); \(a = 5\); \(y = 2\); \(b = 4\) ta có: \(\dfrac{{4.3}}{{5.2}} = \dfrac{{12}}{{10}} = 1,2\)
Video hướng dẫn giải
Thực hiện các phép tính sau:
a) \(\dfrac{{{x^2} - 9}}{{x - 2}}:\dfrac{{x - 3}}{x}\)
b) \(\dfrac{x}{{{z^2}}} \cdot \dfrac{{xz}}{{{y^3}}}:\dfrac{{{x^3}}}{{yz}}\)
c) \(\dfrac{2}{x} - \dfrac{2}{x}:\dfrac{1}{x} + \dfrac{4}{x} \cdot \dfrac{{{x^2}}}{2}\)
Phương pháp giải:
a) Thực hiện phép chia phân thức
b) Thực hiện phép nhân, chia phân thức
c) Thực hiện phép nhân, chia, cộng, trừ phân thức
Lời giải chi tiết:
a) \(\dfrac{{{x^2} - 9}}{{x - 2}}:\dfrac{{x - 3}}{x}\) \( = \dfrac{{\left( {x - 3} \right)\left( {x + 3} \right)}}{{x - 2}}.\dfrac{x}{{x - 3}} = \dfrac{{x\left( {x + 3} \right)}}{{x - 2}}\)
b) \(\dfrac{x}{{{z^2}}} \cdot \dfrac{{xz}}{{{y^3}}}:\dfrac{{{x^3}}}{{yz}}\) \( = \dfrac{x}{{{z^2}}} \cdot \dfrac{{xz}}{{{y^3}}} \cdot \dfrac{{yz}}{{{x^3}}} = \dfrac{{{x^2}y{z^2}}}{{{x^3}{y^3}{z^2}}} = \dfrac{1}{{x{y^2}}}\)
c) \(\dfrac{2}{x} - \dfrac{2}{x}:\dfrac{1}{x} + \dfrac{4}{x} \cdot \dfrac{{{x^2}}}{2}\) \( = \dfrac{2}{x} - \dfrac{2}{x} \cdot \dfrac{x}{1} + \dfrac{4}{x} \cdot \dfrac{{{x^2}}}{2} = \dfrac{2}{x} - 2 + 2x = \dfrac{2}{x} - \dfrac{{2x}}{x} + \dfrac{{2{x^2}}}{x} = \dfrac{{2{x^2} - 2x + 2}}{x}\)
Video hướng dẫn giải
Máy A xát được \(x\) tấn gạo trong \(a\) giờ, máy B xát được \(y\) tấn gạo trong \(b\) giờ.
a) Viết các biểu thức biểu thị số tấn gạo mỗi máy xát được trong 1 giờ (gọi là công suất của máy)
b) Công suất của máy A gấp bao nhiêu lần số máy B? Viết biểu thức biểu thị số lần này.
c) Tính giá trị của biểu thức ở câu b) khi \(x = 3\), \(y = 2\), \(b = 4\)
Phương pháp giải:
Thực hiện phép tính chia để trả lời câu hỏi a, b
Lời giải chi tiết:
a) Biểu thức biểu thị số tấn gạo máy A xát được trong 1 giờ là: \(x:a = \dfrac{x}{a}\) (tấn)
Biểu thức biểu thị số tấn gạo máy B xát được trong 1 giờ là: \(y:b = \dfrac{y}{b}\) (tấn)
b) Công suất máy A gấp số lần máy B là: \(\dfrac{x}{a}:\dfrac{y}{b} = \dfrac{x}{a} \cdot \dfrac{b}{y} = \dfrac{{bx}}{{ay}}\) (lần)
c) Khi \(x = 3\); \(a = 5\); \(y = 2\); \(b = 4\) ta có: \(\dfrac{{4.3}}{{5.2}} = \dfrac{{12}}{{10}} = 1,2\)
Video hướng dẫn giải
Thực hiện các phép tính sau:
a) \(\dfrac{{{x^2} - 9}}{{x - 2}}:\dfrac{{x - 3}}{x}\)
b) \(\dfrac{x}{{{z^2}}} \cdot \dfrac{{xz}}{{{y^3}}}:\dfrac{{{x^3}}}{{yz}}\)
c) \(\dfrac{2}{x} - \dfrac{2}{x}:\dfrac{1}{x} + \dfrac{4}{x} \cdot \dfrac{{{x^2}}}{2}\)
Phương pháp giải:
a) Thực hiện phép chia phân thức
b) Thực hiện phép nhân, chia phân thức
c) Thực hiện phép nhân, chia, cộng, trừ phân thức
Lời giải chi tiết:
a) \(\dfrac{{{x^2} - 9}}{{x - 2}}:\dfrac{{x - 3}}{x}\) \( = \dfrac{{\left( {x - 3} \right)\left( {x + 3} \right)}}{{x - 2}}.\dfrac{x}{{x - 3}} = \dfrac{{x\left( {x + 3} \right)}}{{x - 2}}\)
b) \(\dfrac{x}{{{z^2}}} \cdot \dfrac{{xz}}{{{y^3}}}:\dfrac{{{x^3}}}{{yz}}\) \( = \dfrac{x}{{{z^2}}} \cdot \dfrac{{xz}}{{{y^3}}} \cdot \dfrac{{yz}}{{{x^3}}} = \dfrac{{{x^2}y{z^2}}}{{{x^3}{y^3}{z^2}}} = \dfrac{1}{{x{y^2}}}\)
c) \(\dfrac{2}{x} - \dfrac{2}{x}:\dfrac{1}{x} + \dfrac{4}{x} \cdot \dfrac{{{x^2}}}{2}\) \( = \dfrac{2}{x} - \dfrac{2}{x} \cdot \dfrac{x}{1} + \dfrac{4}{x} \cdot \dfrac{{{x^2}}}{2} = \dfrac{2}{x} - 2 + 2x = \dfrac{2}{x} - \dfrac{{2x}}{x} + \dfrac{{2{x^2}}}{x} = \dfrac{{2{x^2} - 2x + 2}}{x}\)
Video hướng dẫn giải
Đường sắt và đường bộ từ thành phố A đến thành phố B có độ dài bằng nhau và bằng \(s\) (km). Thời gian để đi từ A đến B của tàu hỏa là \(a\) (giờ), của ô tô khách là \(b\) (giờ) (\(a < b\)). Tốc độ của tàu hỏa gấp bao nhiêu lần tốc độ của ô tô? Tính giá trị này khi \(s = 350\), \(a = 5\), \(b = 7\).
Phương pháp giải:
Sử dụng công thức tính vận tốc \(v = \dfrac{s}{t}\)
Lời giải chi tiết:
Tốc độ của tàu hỏa là: \(\dfrac{s}{a}\) (km/giờ)
Tốc độ của ô tô khách là: \(\dfrac{s}{b}\) (km/giờ)
Tốc độ của tàu hỏa gấp tốc độ của ô tô khách số lần là: \(\dfrac{s}{a}:\dfrac{s}{b} = \dfrac{s}{a} \cdot \dfrac{b}{s} = \dfrac{b}{a}\) (lần)
Thay \(s = 350\); \(a = 5\); \(b = 7\) ta có:
\(\dfrac{b}{a} = \dfrac{7}{5}\)
Video hướng dẫn giải
Đường sắt và đường bộ từ thành phố A đến thành phố B có độ dài bằng nhau và bằng \(s\) (km). Thời gian để đi từ A đến B của tàu hỏa là \(a\) (giờ), của ô tô khách là \(b\) (giờ) (\(a < b\)). Tốc độ của tàu hỏa gấp bao nhiêu lần tốc độ của ô tô? Tính giá trị này khi \(s = 350\), \(a = 5\), \(b = 7\).
Phương pháp giải:
Sử dụng công thức tính vận tốc \(v = \dfrac{s}{t}\)
Lời giải chi tiết:
Tốc độ của tàu hỏa là: \(\dfrac{s}{a}\) (km/giờ)
Tốc độ của ô tô khách là: \(\dfrac{s}{b}\) (km/giờ)
Tốc độ của tàu hỏa gấp tốc độ của ô tô khách số lần là: \(\dfrac{s}{a}:\dfrac{s}{b} = \dfrac{s}{a} \cdot \dfrac{b}{s} = \dfrac{b}{a}\) (lần)
Thay \(s = 350\); \(a = 5\); \(b = 7\) ta có:
\(\dfrac{b}{a} = \dfrac{7}{5}\)
Mục 2 của chương trình Toán 8 tập 1 – Chân trời sáng tạo tập trung vào việc ôn tập và củng cố các kiến thức về đa thức, phân thức đại số. Các bài tập trong mục này thường yêu cầu học sinh vận dụng các quy tắc cộng, trừ, nhân, chia đa thức, phân thức để giải quyết các bài toán thực tế. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập là vô cùng quan trọng để học tốt môn Toán 8.
Bài tập 1 yêu cầu học sinh giải phương trình bậc nhất một ẩn. Để giải bài tập này, học sinh cần thực hiện các bước sau:
Bài tập 2 yêu cầu học sinh tính giá trị của một biểu thức đại số khi biết giá trị của các biến. Để giải bài tập này, học sinh cần thực hiện các bước sau:
Bài tập 3 yêu cầu học sinh chứng minh một đẳng thức đại số. Để chứng minh đẳng thức, học sinh có thể sử dụng các phương pháp sau:
Bài tập 4 thường là một bài toán ứng dụng thực tế, yêu cầu học sinh vận dụng kiến thức đã học để giải quyết vấn đề. Để giải bài toán này, học sinh cần thực hiện các bước sau:
Khi giải bài tập mục 2 trang 37, 38 SGK Toán 8 tập 1 – Chân trời sáng tạo, học sinh cần lưu ý những điều sau:
Ngoài SGK Toán 8 tập 1 – Chân trời sáng tạo, học sinh có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 8:
Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải quyết các bài tập mục 2 trang 37, 38 SGK Toán 8 tập 1 – Chân trời sáng tạo. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán 8!