Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 10 trang 89 SGK Toán 8 tập 1 – Chân trời sáng tạo. Bài viết này sẽ giúp học sinh nắm vững kiến thức, hiểu rõ phương pháp giải và tự tin làm bài tập.
Chúng tôi luôn cố gắng cung cấp những lời giải chính xác, dễ hiểu và phù hợp với trình độ của học sinh. Hãy cùng theo dõi bài viết để có được kết quả tốt nhất trong môn Toán 8 nhé!
Cho tam giác
Đề bài
Cho tam giác \(ABC\) vuông tại \(A\) (\(AB < AC\)). Gọi \(M\), \(N\), \(E\) lần lượt là trung điểm của \(AB\), \(AC\), \(BC\)
a) Chứng minh rằng tứ giác \(ANEB\) là hình thang vuông
b) Chứng minh rằng tứ giác \(ANEM\) là hình chữ nhật
c) Qua \(M\) kẻ đường thẳng song song với \(BN\) cắt \(EN\) tại \(F\). Chứng minh rằng tứ giác \(AFCE\) là hình thoi
d) Gọi \(D\) là điểm đối cứng của \(E\) qua \(M\). Chứng minh rằng \(A\) là trung điểm của \(DF\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a) Áp dụng dấu hiệu nhận biết hình thang vuông
b) Áp dụng dấu hiệu nhận biết hình chữ nhật
c) Áp dụng dấu hiệu nhận biết hình thoi
d) Chứng minh 3 điểm \(A\), \(E\), \(F\) thẳng hàng và \(AD = AF\) (do cùng bằng \(BE\))
Lời giải chi tiết
a) Xét tam giác ABC vuông tại A có E là trung điểm của BC nên AE là đường trung tuyến ứng với cạnh huyền của tam giác ABC nên AE = BE = EC = \(\frac{1}{2}\) BC.
Vì AE = EC nên E thuộc đường trung trực của AC. Vì N là trung điểm của AC nên N thuộc đường trung trực của AC.
=> EN là đường trung trực của AC hay \( EN \bot AC\)
Ta có \(AB \bot AC, EN \bot AC \Rightarrow AB // EN\) nên ANEB là hình thang.
Vì \(\widehat {BAN} = 90^0\) nên ANEB là hình thang vuông.
b) \(M\), \(E\) lần lượt là trung điểm của \(AB\) và \(BC\) (gt);
Suy ra \(ME\) là đường trung bình của \(\Delta ABC\)
Suy ra \(ME\) // \(AC\) hay \(ME\) // \(AN\)
Mà \(AM\) // \(NE\) (do \(AB\) // \(NE\))
Suy ra tứ giác \(AMEN\) là hình bình hành
Mà \(\widehat {{\rm{MAN}}} = 90^\circ \) nên \(AMEN\) là hình chữ nhật
c) Xét tứ giác \(BMFN\) có: \(MF\) // \(BN\) (gt) và \(BM\) // \(FN\) (do \(AB\) // \(NE\))
Suy ra \(BMFN\) là hình bình hành
Suy ra \(BM = FN\)
Mặt khác \(NE = AM\) (Tứ giác \(ANEM\) là hình chữ nhật) và \(AM = BM\)
Suy ra \(FN = NE\)
Tứ giác \(AFCE\) có \(N\) là trung điểm của \(AC\) và \(EF\)
Suy ra \(AFCE\) là hình bình hành
Mà \(AC \bot EF\)
Do đó \(AFCE\) là hình thoi
d) Xét tứ giác \(ADBE\) ta có: \(DE\) và \(AB\) cắt nhau tại \(M\) (gt)
Mà \(M\) là trung điểm của \(AB\) (gt)
\(M\) là trung điểm của \(DE\) (do \(D\) đối xứng với \(E\) qua \(M\))
Suy ra \(ADBE\) là hình bình hành
Suy ra \(AD\) // \(BE\) hay \(AD\) // \(EC\)
Mà \(AF\) // \(EC\) (do \(AECF\) là hình thoi)
Suy ra \(A,D,F\) thẳng hàng (1)
Mà \(ADBE\) là hình bình hành
Suy ra \(BE\) // \(AD\)
Mà \(AF = EC\) (do \(AFCE\) là hình thoi); \(EB = EC\) (gt)
Suy ra \(AD = AF\)(2)
Từ (1) và (2) suy ra \(A\) là trung điểm của \(DF\)
Bài 10 trang 89 SGK Toán 8 tập 1 – Chân trời sáng tạo thuộc chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức đã học về hình học, cụ thể là các tính chất của hình bình hành, hình chữ nhật, hình thoi và hình vuông để giải quyết các bài toán thực tế. Bài toán này yêu cầu học sinh phải hiểu rõ các định nghĩa, tính chất và dấu hiệu nhận biết của các loại hình đặc biệt này.
Bài 10 trang 89 SGK Toán 8 tập 1 – Chân trời sáng tạo thường xoay quanh việc chứng minh một hình là hình gì, tính độ dài các cạnh, số đo các góc, diện tích hoặc chu vi của hình. Đôi khi, bài toán cũng yêu cầu học sinh phải vẽ hình và trình bày lời giải một cách logic và khoa học.
Để giải bài 10 trang 89 SGK Toán 8 tập 1 – Chân trời sáng tạo một cách hiệu quả, học sinh cần:
(Ở đây sẽ là lời giải chi tiết của bài toán, bao gồm các bước giải, giải thích và kết luận. Ví dụ, nếu bài toán yêu cầu chứng minh một hình là hình chữ nhật, lời giải sẽ trình bày các bước chứng minh dựa trên các tính chất của hình chữ nhật.)
Bài toán: Cho hình bình hành ABCD. Gọi E là trung điểm của cạnh AB. Gọi F là giao điểm của DE và AC. Chứng minh rằng AF = 2FC.
Lời giải:
Để củng cố kiến thức và kỹ năng giải bài toán về hình học, học sinh có thể luyện tập thêm các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Việc luyện tập thường xuyên sẽ giúp học sinh nắm vững kiến thức và tự tin hơn khi làm bài kiểm tra.
Học sinh có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 8:
Bài 10 trang 89 SGK Toán 8 tập 1 – Chân trời sáng tạo là một bài toán quan trọng giúp học sinh củng cố kiến thức về hình học. Hy vọng rằng với lời giải chi tiết và các phương pháp giải bài toán được trình bày trong bài viết này, học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán 8.