Chào mừng các em học sinh đến với lời giải chi tiết Bài 9 trang 28 SGK Toán 8 tập 2 – Chân trời sáng tạo trên giaitoan.edu.vn. Bài viết này sẽ cung cấp đáp án, phương pháp giải và giải thích rõ ràng từng bước để giúp các em hiểu bài và làm bài tập một cách hiệu quả.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng cao, giúp các em học Toán 8 dễ dàng và thú vị hơn. Hãy cùng bắt đầu nhé!
Đồ thị hàm số (y = dfrac{{ - x + 10}}{5})
Đề bài
Đồ thị hàm số \(y = \dfrac{{ - x + 10}}{5}\)
A. là một đường thẳng có hệ số góc là -1.
B. không phải là một đường thẳng.
C. cắt trục hoành tại điểm có hoành độ là 10.
D. đi qua điểm \(\left( {200;50} \right)\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
- Đồ thị của hàm số \(y = ax + b\) là một đường thẳng có hệ số góc là \(a\). Đồ thị hàm số cắt trục tung tại điểm \(A\left( {0;b} \right)\) cắt trục hoành tại điểm \(B\left( {\dfrac{{ - b}}{a};0} \right)\).
- Điểm \(M\left( {{x_0};{y_0}} \right)\) thuộc đồ thị hàm số \(y = ax + b\) khi và chỉ khi \({y_0} = a{x_0} + b\)
Lời giải chi tiết
Đáp án đúng là C
Ta có: \(y = \dfrac{{ - x + 10}}{5} = \dfrac{{ - x}}{5} + \dfrac{{10}}{5} = \dfrac{{ - 1}}{5}x + 2\)
Vì hàm số \(y = \dfrac{{ - 1}}{5}x + 2\) có dạng \(y = ax + b\) nên đồ thị của hàm số là một đường thẳng với hệ số góc \(a = \dfrac{{ - 1}}{5}\).
Đồ thị hàm số cắt trục tung tại điểm \(A\left( {0;2} \right)\); Đồ thị hàm số cắt trục hoành tại điểm \(B\left( {10;0} \right)\).
Thay \(x = 200\) vào hàm số ta được: \(y = \dfrac{{ - 1}}{5}.200 + 2 = - 40 + 2 = - 38 \ne 50\). Do đó điểm \(\left( {200;50} \right)\)không thuộc đồ thị hàm số.
Vậy đáp án đúng là đồ thị hàm số cắt trục hoành tại điểm có hoành độ là 10.
Bài 9 trang 28 SGK Toán 8 tập 2 – Chân trời sáng tạo thuộc chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức đã học về hình hộp chữ nhật và hình lập phương để giải các bài toán thực tế. Bài tập này yêu cầu học sinh phải hiểu rõ các công thức tính diện tích xung quanh, diện tích toàn phần và thể tích của các hình này.
Bài 9 bao gồm các câu hỏi và bài tập khác nhau, yêu cầu học sinh:
Để tính diện tích xung quanh của hình hộp chữ nhật, ta sử dụng công thức: Diện tích xung quanh = 2 * (chiều dài + chiều rộng) * chiều cao. Trong bài toán này, ta cần xác định đúng chiều dài, chiều rộng và chiều cao của hình hộp chữ nhật để áp dụng công thức một cách chính xác.
Diện tích toàn phần của hình hộp chữ nhật được tính bằng công thức: Diện tích toàn phần = Diện tích xung quanh + 2 * Diện tích đáy. Việc tính toán diện tích đáy là bước quan trọng để đảm bảo kết quả chính xác.
Thể tích của hình hộp chữ nhật được tính bằng công thức: Thể tích = Chiều dài * Chiều rộng * Chiều cao. Đảm bảo các kích thước được sử dụng đúng đơn vị đo.
Đối với hình lập phương, tất cả các cạnh đều bằng nhau. Do đó, công thức tính diện tích xung quanh, diện tích toàn phần và thể tích được đơn giản hóa:
Giả sử một hình hộp chữ nhật có chiều dài 5cm, chiều rộng 3cm và chiều cao 4cm. Hãy tính diện tích xung quanh, diện tích toàn phần và thể tích của hình hộp chữ nhật này.
Giải:
Khi giải các bài toán về hình hộp chữ nhật và hình lập phương, cần chú ý:
Để củng cố kiến thức, các em có thể tự giải thêm các bài tập sau:
Bài 9 trang 28 SGK Toán 8 tập 2 – Chân trời sáng tạo là một bài tập quan trọng giúp các em hiểu rõ hơn về các khái niệm và công thức liên quan đến hình hộp chữ nhật và hình lập phương. Hy vọng với lời giải chi tiết và hướng dẫn cụ thể trên đây, các em sẽ tự tin hơn khi giải các bài tập tương tự.