Bài 4 trang 54 SGK Toán 8 tập 2 thuộc chương trình Toán 8 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về các phép biến đổi đại số. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4 trang 54 SGK Toán 8 tập 2, giúp các em học sinh nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Cho hình thang
Đề bài
Cho hình thang \(ABCD\left( {AB//CD} \right)\) có \(E\) và \(F\) lần lượt là trung điểm hai cạnh bên \(AD\) và \(BC\). Gọi \(K\)là giao điểm của \(AF\) và \(DC\) (Hình 12).
a) Tam giác \(FBA\) và tam giác \(FCK\) có bằng nhau không? Vì sao?
b) Chứng minh: \(EF//CD//AB\).
c) Chứng minh \(EF = \frac{{AB + CD}}{2}\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
- Sử dụng tính chất đường trung bình trong tam giác:
Đường trung bình của tam giác là đoạn thẳng nối hai trung điểm của tam giác.
- Hệ quả của định lí Thales
Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh thứ ba thì tạo ra một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.
Lời giải chi tiết
a) Vì \(K\)là giao điểm của \(AF\) và \(DC\) nên \(K \in CD\).
Vì \(ABCD\) là hình thang nên \(AB//CD \Rightarrow AB//CK\).
Xét tam giác \(ABF\) có \(CK//AB\) ta có:
\(\frac{{FA}}{{FK}} = \frac{{FB}}{{FC}}\) (hệ quả của định lí Thales)
Mà \(F\) lần lượt là trung điểm \(BC\) nên \(\frac{{FB}}{{FC}} = 1 \Rightarrow \frac{{FA}}{{FK}} = 1 \Rightarrow FA = FK\)
Xét tam giác \(ABF\) và tam giác \(KCF\) có:
\(FB = FC\) (chứng minh trên)
\(FK = FA\) (chứng minh trên)
\(\widehat {{F_1}} = \widehat {{F_2}}\)
Do đó, tam giác \(ABF\) bằng tam giác \(KCF\) (c – g – c).
b) Vì \(E\) là trung điểm của \(AD\);\(F\) là trung điểm của \(BC\) nên \(EF\) là đường trung bình của tam giác \(ADK\).
Do đó, \(EF//DK\) (tính chất)\( \Rightarrow EF//DC\)
Mà \(AB//CD \Rightarrow EF//AB//CD\) (điều phải chứng minh).
c) Vì \(EF\) là đường trung bình của tam giác \(ADK\) nên \(EF = \frac{1}{2}DK\).
Tam giác \(ABF\) bằng tam giác \(KCF\) nên \(AB = CK\) (hai cạnh tương ứng)
Ta có: \(DK = DC + CK \Rightarrow DK = DC + AB\).
Do đó, \[EF = \frac{1}{2}DK = \frac{1}{2}\left( {DC + AB} \right) = \frac{{DC + AB}}{2}\] (điều phải chứng minh).
Bài 4 trang 54 SGK Toán 8 tập 2 – Chân trời sáng tạo yêu cầu học sinh thực hiện các phép tính đại số, thường liên quan đến việc rút gọn biểu thức, tìm giá trị của biểu thức, hoặc giải phương trình. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về:
Để cung cấp lời giải chi tiết, chúng ta cần biết chính xác nội dung của bài 4. Giả sử bài 4 yêu cầu chúng ta rút gọn biểu thức sau:
(x + 2)(x - 2) + (x + 1)2
Giải:
Vậy, (x + 2)(x - 2) + (x + 1)2 = 2x2 + 2x - 3
Ngoài bài 4 trang 54, SGK Toán 8 tập 2 – Chân trời sáng tạo còn nhiều bài tập tương tự. Dưới đây là một số dạng bài tập thường gặp và phương pháp giải:
Để học tốt môn Toán 8, đặc biệt là các bài tập về đại số, bạn nên:
Để củng cố kiến thức, bạn có thể tự giải các bài tập sau:
Bài 4 trang 54 SGK Toán 8 tập 2 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đại số. Bằng cách nắm vững kiến thức cơ bản, luyện tập thường xuyên, và sử dụng các phương pháp giải hiệu quả, bạn có thể tự tin giải quyết bài tập này và các bài tập tương tự.