Chào mừng các em học sinh đến với lời giải chi tiết Bài 7 trang 41 SGK Toán 8 tập 2 – Chân trời sáng tạo. Bài viết này được giaitoan.edu.vn biên soạn nhằm hỗ trợ các em trong quá trình ôn tập và làm bài tập Toán 8.
Chúng tôi sẽ cung cấp đáp án, phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Giải các phương trình sau: a) (5x - 12 = 3); b) (2,5y + 6 = - 6,5); c) (dfrac{1}{5}x - 2 = dfrac{3}{5}); d) (dfrac{1}{2}x + dfrac{2}{3} = x + 1).
\(5x - 12 = 3\);
Phương pháp giải:
Để giải phương trình ta có thể sử dụng các quy tắc sau:
- Chuyển một số hạng từ vế bên này sang vế bên kia và đổi dấu số hạng (Quy tắc chuyển vế);
- Nhân cả hai vế với cùng một số khác 0 (Quy tắc nhân với một số);
- Chia hai vế cho cùng một số khác 0 (Quy tắc chia cho một số).
Lời giải chi tiết:
\(5x - 12 = 3\)
\(5x = 3 + 12\)
\(5x = 15\)
\(x = 15:5\)
\(x = 3\)
Vậy phương trình có nghiệm là \(x = 3\).
\(2,5y + 6 = - 6,5\);
Phương pháp giải:
Để giải phương trình ta có thể sử dụng các quy tắc sau:
- Chuyển một số hạng từ vế bên này sang vế bên kia và đổi dấu số hạng (Quy tắc chuyển vế);
- Nhân cả hai vế với cùng một số khác 0 (Quy tắc nhân với một số);
- Chia hai vế cho cùng một số khác 0 (Quy tắc chia cho một số).
Lời giải chi tiết:
\(2,5y + 6 = - 6,5\)
\(2,5y = - 6,5 - 6\)
\(2,5y = - 12,5\)
\(y = \left( { - 12,5} \right):2,5\)
\(y = - 5\)
Vậy phương trình có nghiệm là \(y = - 5\).
\(\dfrac{1}{5}x - 2 = \dfrac{3}{5}\);
Phương pháp giải:
Để giải phương trình ta có thể sử dụng các quy tắc sau:
- Chuyển một số hạng từ vế bên này sang vế bên kia và đổi dấu số hạng (Quy tắc chuyển vế);
- Nhân cả hai vế với cùng một số khác 0 (Quy tắc nhân với một số);
- Chia hai vế cho cùng một số khác 0 (Quy tắc chia cho một số).
Lời giải chi tiết:
\(\dfrac{1}{5}x - 2 = \dfrac{3}{5}\)
\(\dfrac{1}{5}x = \dfrac{3}{5} + 2\)
\(\dfrac{1}{5}x = \dfrac{{13}}{5}\)
\(x = \dfrac{{13}}{5}:\dfrac{1}{5}\)
\(x = 13\)
Vậy phương trình có nghiệm là \(x = 13\).
\(\dfrac{1}{2}x + \dfrac{2}{3} = x + 1\).
Phương pháp giải:
Để giải phương trình ta có thể sử dụng các quy tắc sau:
- Chuyển một số hạng từ vế bên này sang vế bên kia và đổi dấu số hạng (Quy tắc chuyển vế);
- Nhân cả hai vế với cùng một số khác 0 (Quy tắc nhân với một số);
- Chia hai vế cho cùng một số khác 0 (Quy tắc chia cho một số).
Lời giải chi tiết:
\(\dfrac{1}{2}x + \dfrac{2}{3} = x + 1\)
\(\dfrac{1}{2}x - x = 1 - \dfrac{2}{3}\)
\(\dfrac{{ - 1}}{2}x = \dfrac{1}{3}\)
\(x = \dfrac{1}{3}:\left( {\dfrac{{ - 1}}{2}} \right)\)
\(x = \dfrac{{ - 2}}{3}\)
Vậy phương trình có nghiệm là \(x = \dfrac{{ - 2}}{3}\).
Video hướng dẫn giải
Giải các phương trình sau:
\(5x - 12 = 3\);
Phương pháp giải:
Để giải phương trình ta có thể sử dụng các quy tắc sau:
- Chuyển một số hạng từ vế bên này sang vế bên kia và đổi dấu số hạng (Quy tắc chuyển vế);
- Nhân cả hai vế với cùng một số khác 0 (Quy tắc nhân với một số);
- Chia hai vế cho cùng một số khác 0 (Quy tắc chia cho một số).
Lời giải chi tiết:
\(5x - 12 = 3\)
\(5x = 3 + 12\)
\(5x = 15\)
\(x = 15:5\)
\(x = 3\)
Vậy phương trình có nghiệm là \(x = 3\).
\(2,5y + 6 = - 6,5\);
Phương pháp giải:
Để giải phương trình ta có thể sử dụng các quy tắc sau:
- Chuyển một số hạng từ vế bên này sang vế bên kia và đổi dấu số hạng (Quy tắc chuyển vế);
- Nhân cả hai vế với cùng một số khác 0 (Quy tắc nhân với một số);
- Chia hai vế cho cùng một số khác 0 (Quy tắc chia cho một số).
Lời giải chi tiết:
\(2,5y + 6 = - 6,5\)
\(2,5y = - 6,5 - 6\)
\(2,5y = - 12,5\)
\(y = \left( { - 12,5} \right):2,5\)
\(y = - 5\)
Vậy phương trình có nghiệm là \(y = - 5\).
\(\dfrac{1}{5}x - 2 = \dfrac{3}{5}\);
Phương pháp giải:
Để giải phương trình ta có thể sử dụng các quy tắc sau:
- Chuyển một số hạng từ vế bên này sang vế bên kia và đổi dấu số hạng (Quy tắc chuyển vế);
- Nhân cả hai vế với cùng một số khác 0 (Quy tắc nhân với một số);
- Chia hai vế cho cùng một số khác 0 (Quy tắc chia cho một số).
Lời giải chi tiết:
\(\dfrac{1}{5}x - 2 = \dfrac{3}{5}\)
\(\dfrac{1}{5}x = \dfrac{3}{5} + 2\)
\(\dfrac{1}{5}x = \dfrac{{13}}{5}\)
\(x = \dfrac{{13}}{5}:\dfrac{1}{5}\)
\(x = 13\)
Vậy phương trình có nghiệm là \(x = 13\).
\(\dfrac{1}{2}x + \dfrac{2}{3} = x + 1\).
Phương pháp giải:
Để giải phương trình ta có thể sử dụng các quy tắc sau:
- Chuyển một số hạng từ vế bên này sang vế bên kia và đổi dấu số hạng (Quy tắc chuyển vế);
- Nhân cả hai vế với cùng một số khác 0 (Quy tắc nhân với một số);
- Chia hai vế cho cùng một số khác 0 (Quy tắc chia cho một số).
Lời giải chi tiết:
\(\dfrac{1}{2}x + \dfrac{2}{3} = x + 1\)
\(\dfrac{1}{2}x - x = 1 - \dfrac{2}{3}\)
\(\dfrac{{ - 1}}{2}x = \dfrac{1}{3}\)
\(x = \dfrac{1}{3}:\left( {\dfrac{{ - 1}}{2}} \right)\)
\(x = \dfrac{{ - 2}}{3}\)
Vậy phương trình có nghiệm là \(x = \dfrac{{ - 2}}{3}\).
Bài 7 trang 41 SGK Toán 8 tập 2 thuộc chương trình Toán 8 Chân trời sáng tạo, tập trung vào việc vận dụng các kiến thức về hình hộp chữ nhật và hình lập phương để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải hiểu rõ các công thức tính diện tích xung quanh, diện tích toàn phần và thể tích của hai hình này.
Bài 7 bao gồm các câu hỏi và bài tập khác nhau, được chia thành các phần nhỏ để học sinh dễ dàng tiếp cận. Các dạng bài tập thường gặp bao gồm:
Để giải quyết các bài tập trong Bài 7 trang 41, học sinh cần nắm vững các công thức sau:
Trong đó:
Ví dụ 1: Một hình hộp chữ nhật có chiều dài 5cm, chiều rộng 3cm và chiều cao 4cm. Tính diện tích xung quanh, diện tích toàn phần và thể tích của hình hộp chữ nhật đó.
Giải:
Khi giải các bài tập về hình hộp chữ nhật và hình lập phương, học sinh cần chú ý:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các em có thể tự giải các bài tập sau:
Bài 7 trang 41 SGK Toán 8 tập 2 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh hiểu rõ hơn về hình hộp chữ nhật và hình lập phương. Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trong bài viết này, các em sẽ học tập hiệu quả và đạt kết quả tốt trong môn Toán.