Chào mừng các em học sinh đến với lời giải chi tiết bài 1 trang 113 Vở thực hành Toán 9 tại giaitoan.edu.vn. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, đồng hành cùng các em trên con đường chinh phục môn Toán.
Bạn Thanh cắt 4 hình tròn bằng giấy có bán kính lần lượt là 4 cm, 6 cm, 7 cm và 8 cm để dán trang trí trên một mảnh giấy, trên đó có vẽ trước hai đường thẳng a và b. Biết rằng a và b là hai đường thẳng song song với nhau và cách nhau một khoảng 6 cm (nghĩa là mọi điểm trên đường thẳng b đều cách a một khoảng 6 cm). Hỏi nếu bạn Thanh dán sao cho tâm của cả 4 hình tròn đều nằm trên đường thẳng b thì hình tròn nào sẽ che khuất một phần của đường thẳng a, hình tròn nào sẽ không che khuất một phần củ
Đề bài
Bạn Thanh cắt 4 hình tròn bằng giấy có bán kính lần lượt là 4 cm, 6 cm, 7 cm và 8 cm để dán trang trí trên một mảnh giấy, trên đó có vẽ trước hai đường thẳng a và b. Biết rằng a và b là hai đường thẳng song song với nhau và cách nhau một khoảng 6 cm (nghĩa là mọi điểm trên đường thẳng b đều cách a một khoảng 6 cm). Hỏi nếu bạn Thanh dán sao cho tâm của cả 4 hình tròn đều nằm trên đường thẳng b thì hình tròn nào sẽ che khuất một phần của đường thẳng a, hình tròn nào sẽ không che khuất một phần của đường thẳng a?
Phương pháp giải - Xem chi tiết
Cho đường thẳng a và đường tròn (O; R). Gọi d là khoảng cách từ O đến a. Khi đó:
+ Đường thẳng a và đường tròn (O; R) cắt nhau khi \(d < R\).
+ Đường thẳng a và đường tròn (O; R) tiếp xúc với nhau khi \(d = R\).
+ Đường thẳng a và đường tròn (O; R) không giao nhau khi \(d > R\).
Lời giải chi tiết
Giả sử bốn hình tròn bằng giấy có tâm lần lượt là A, B, C và D. Khi đó, ta có các đường tròn (A; 4cm), (B; 6cm), (C; 7cm), (D; 8cm). Tâm của các đường tròn này thuộc đường thẳng b nên đều cách a một khoảng \(d = 6cm\).
+ Đường tròn (A; 4cm) có bán kính 4cm
+ Đường tròn (B; 6cm) có bán kính 6cm = d nên đường tròn (B; 6cm) tiếp xúc với đường thẳng a.
+ Đường tròn (C; 7cm) có bán kính 7cm>d nên đường tròn (C; 7cm) cắt đường thẳng a.
+ Đường tròn (D; 8cm) có bán kính 8cm>d nên đường tròn (D; 8cm) cắt đường thẳng a.
Từ đó các hình tròn bán kính 4cm, 6cm không đè lên đường thẳng a; các hình tròn bán kính 7cm, 8cm đè lên đường thẳng a.
Bài 1 trang 113 Vở thực hành Toán 9 thuộc chương trình học Toán 9, thường liên quan đến các kiến thức về hàm số bậc nhất, hệ số góc, và ứng dụng của hàm số trong việc giải quyết các bài toán thực tế. Để giải quyết bài tập này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản và phương pháp giải phù hợp.
Để giải bài 1 trang 113 Vở thực hành Toán 9, chúng ta cần thực hiện các bước sau:
(Ở đây sẽ là lời giải chi tiết cho bài 1 trang 113 Vở thực hành Toán 9. Ví dụ, nếu bài toán yêu cầu tìm hàm số đi qua hai điểm A(x1, y1) và B(x2, y2), lời giải sẽ bao gồm các bước tính toán hệ số góc và phương trình đường thẳng.)
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các em có thể tham khảo các bài tập tương tự sau:
Các em có thể tìm hiểu thêm về các ứng dụng của hàm số trong các lĩnh vực khác nhau, như vật lý, kinh tế, và khoa học máy tính. Việc hiểu rõ về hàm số sẽ giúp các em giải quyết các bài toán phức tạp hơn và phát triển tư duy logic.
Hy vọng rằng bài viết này đã cung cấp cho các em những kiến thức và phương pháp giải bài tập hiệu quả. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!