Logo Header
  1. Môn Toán
  2. Giải bài 4 trang 22, 23 vở thực hành Toán 9 tập 2

Giải bài 4 trang 22, 23 vở thực hành Toán 9 tập 2

Giải bài 4 trang 22, 23 Vở thực hành Toán 9 tập 2

Chào mừng các em học sinh đến với lời giải chi tiết bài 4 trang 22, 23 Vở thực hành Toán 9 tập 2. Bài học này thuộc chương trình Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất.

Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp đáp án chính xác, dễ hiểu và phương pháp giải bài tập hiệu quả.

Tính nhẩm nghiệm của các phương trình sau: a) (2{x^2} - 9x + 7 = 0); b) (3{x^2} + 11x + 8 = 0); c) (7{x^2} - 15x + 2 = 0), biết phương trình có một nghiệm ({x_1} = 2).

Đề bài

Tính nhẩm nghiệm của các phương trình sau:

a) \(2{x^2} - 9x + 7 = 0\);

b) \(3{x^2} + 11x + 8 = 0\);

c) \(7{x^2} - 15x + 2 = 0\), biết phương trình có một nghiệm \({x_1} = 2\).

Phương pháp giải - Xem chi tiếtGiải bài 4 trang 22, 23 vở thực hành Toán 9 tập 2 1

Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\).

Nếu \(a + b + c = 0\) thì phương trình có một nghiệm là \({x_1} = 1\), còn nghiệm kia là \({x_2} = \frac{c}{a}\).

Nếu \(a - b + c = 0\) thì phương trình có một nghiệm là \({x_1} = - 1\), còn nghiệm kia là \({x_2} = - \frac{c}{a}\).

Lời giải chi tiết

a) Ta có: \(a + b + c = 0\) nên phương trình có hai nghiệm: \({x_1} = 1;{x_2} = \frac{7}{2}\).

b) Ta có: \(a - b + c = 0\) nên phương trình có hai nghiệm: \({x_1} = - 1;{x_2} = \frac{{ - 8}}{3}\).

c) Gọi \({x_2}\) là nghiệm còn lại của phương trình.

Theo định lí Viète, ta có: \({x_1}.{x_2} = \frac{2}{7}\), suy ra, \({x_2} = \frac{2}{{7{x_1}}} = \frac{2}{{7.2}} = \frac{1}{7}\).

Vậy phương trình có hai nghiệm: \({x_1} = 2;{x_2} = \frac{1}{7}\).

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 4 trang 22, 23 vở thực hành Toán 9 tập 2 đặc sắc thuộc chuyên mục giải bài tập toán lớp 9 trên nền tảng soạn toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 4 trang 22, 23 Vở thực hành Toán 9 tập 2: Tổng quan

Bài 4 trang 22, 23 Vở thực hành Toán 9 tập 2 là một bài tập quan trọng trong chương trình ôn tập về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng áp dụng công thức.

Nội dung bài tập

Bài 4 bao gồm các dạng bài tập sau:

  • Xác định hệ số góc và tung độ gốc của hàm số bậc nhất.
  • Vẽ đồ thị hàm số bậc nhất.
  • Tìm tọa độ giao điểm của hai đường thẳng.
  • Giải các bài toán liên quan đến ứng dụng của hàm số bậc nhất.

Hướng dẫn giải chi tiết

Bài 4.1 trang 22 Vở thực hành Toán 9 tập 2

Cho hàm số y = 2x + 3. Hãy xác định hệ số góc và tung độ gốc của hàm số.

Giải:

Hàm số y = 2x + 3 có dạng y = ax + b, trong đó a là hệ số góc và b là tung độ gốc.

So sánh với dạng tổng quát, ta có a = 2 và b = 3.

Vậy, hệ số góc của hàm số là 2 và tung độ gốc là 3.

Bài 4.2 trang 22 Vở thực hành Toán 9 tập 2

Vẽ đồ thị của hàm số y = -x + 1.

Giải:

Để vẽ đồ thị của hàm số y = -x + 1, ta cần xác định hai điểm thuộc đồ thị.

Chọn x = 0, ta có y = -0 + 1 = 1. Vậy điểm A(0; 1) thuộc đồ thị.

Chọn x = 1, ta có y = -1 + 1 = 0. Vậy điểm B(1; 0) thuộc đồ thị.

Vẽ đường thẳng đi qua hai điểm A(0; 1) và B(1; 0), ta được đồ thị của hàm số y = -x + 1.

Bài 4.3 trang 23 Vở thực hành Toán 9 tập 2

Tìm tọa độ giao điểm của hai đường thẳng y = x + 2 và y = -2x + 5.

Giải:

Để tìm tọa độ giao điểm của hai đường thẳng, ta giải hệ phương trình:

{ y = x + 2y = -2x + 5 }

Thay y = x + 2 vào phương trình y = -2x + 5, ta được:

x + 2 = -2x + 5

3x = 3

x = 1

Thay x = 1 vào phương trình y = x + 2, ta được:

y = 1 + 2 = 3

Vậy, tọa độ giao điểm của hai đường thẳng là (1; 3).

Lưu ý khi giải bài tập

  • Nắm vững định nghĩa và tính chất của hàm số bậc nhất.
  • Thực hành vẽ đồ thị hàm số bậc nhất thành thạo.
  • Rèn luyện kỹ năng giải hệ phương trình.
  • Đọc kỹ đề bài và xác định đúng yêu cầu của bài toán.

Kết luận

Bài 4 trang 22, 23 Vở thực hành Toán 9 tập 2 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất. Hy vọng với hướng dẫn chi tiết này, các em sẽ tự tin giải quyết các bài tập tương tự và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 9