Logo Header
  1. Môn Toán
  2. Giải bài 6 trang 64 vở thực hành Toán 9

Giải bài 6 trang 64 vở thực hành Toán 9

Giải bài 6 trang 64 Vở thực hành Toán 9

Chào mừng các em học sinh đến với lời giải chi tiết bài 6 trang 64 Vở thực hành Toán 9 tại giaitoan.edu.vn. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu và hiệu quả nhất.

Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng cao, giúp các em nắm vững kiến thức và đạt kết quả tốt trong môn Toán.

Không dùng MTCT, tính ({left( {sqrt[3]{5}.sqrt[3]{7}} right)^3}). Sử dụng kết quả nhận được, hãy giải thích vì sao (sqrt[3]{5}.sqrt[3]{7} = sqrt[3]{{5.7}})

Đề bài

Không dùng MTCT, tính \({\left( {\sqrt[3]{5}.\sqrt[3]{7}} \right)^3}\). Sử dụng kết quả nhận được, hãy giải thích vì sao \(\sqrt[3]{5}.\sqrt[3]{7} = \sqrt[3]{{5.7}}\)

Phương pháp giải - Xem chi tiếtGiải bài 6 trang 64 vở thực hành Toán 9 1

+ Ta có \({\left( {\sqrt[3]{A}} \right)^3} = \sqrt[3]{{{A^3}}} = A\) với A là một biểu thức đại số.

+ \({\left( {a.b} \right)^3} = {a^3}.{b^3}\)

+ Căn bậc ba của số thực a là số thực x thỏa mãn \({x^3} = a\) (kí hiệu là \(\sqrt[3]{a}\)).

Lời giải chi tiết

Áp dụng quy tắc lũy thừa của một tích ta có \({\left( {a.b} \right)^3} = {a^3}.{b^3}\). Vì vậy \({\left( {\sqrt[3]{5}.\sqrt[3]{7}} \right)^3} = {\left( {\sqrt[3]{5}} \right)^3}.{\left( {\sqrt[3]{7}} \right)^3} = 5.7 = 35\).

Mặt khác, theo định nghĩa căn bậc ba ta có \({\left( {\sqrt[3]{5}} \right)^3} = 5\) và \({\left( {\sqrt[3]{7}} \right)^3} = 7\). Do đó \({\left( {\sqrt[3]{5}.\sqrt[3]{7}} \right)^3} = 5.7\) (*)

Lại theo định nghĩa căn bậc ba, từ (*) suy ra \(\sqrt[3]{5}.\sqrt[3]{7} = \sqrt[3]{{5.7}}\).

Nhận xét. Một cách tổng quát, có thể chứng minh các quy tắc nhân, chia, nâng lên lũy thừa các căn bậc ba sau đây:

  • \(\sqrt[3]{a}.\sqrt[3]{b} = \sqrt[3]{{a.b}}\) (Quy tắc nhân hai căn bậc ba);
  • \(\sqrt[3]{a}:\sqrt[3]{b} = \sqrt[3]{{a:b}},\left( {b \ne 0} \right)\) (Quy tắc chia hai căn bậc ba);

\({\left( {\sqrt[3]{a}} \right)^n} = \sqrt[3]{{{a^n}}},\left( {n \in \mathbb{N}} \right)\) (Quy tắc nâng lên lũy thừa một căn bậc ba).

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 6 trang 64 vở thực hành Toán 9 đặc sắc thuộc chuyên mục giải toán 9 trên nền tảng soạn toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 6 trang 64 Vở thực hành Toán 9: Tổng quan

Bài 6 trang 64 Vở thực hành Toán 9 thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.

Nội dung bài tập

Bài 6 trang 64 Vở thực hành Toán 9 thường bao gồm các dạng bài tập sau:

  • Xác định hàm số bậc nhất: Học sinh cần xác định các hệ số a, b trong hàm số y = ax + b.
  • Vẽ đồ thị hàm số bậc nhất: Học sinh cần vẽ đồ thị của hàm số dựa trên các điểm đã cho hoặc bằng cách sử dụng các hệ số a, b.
  • Tìm giao điểm của hai đường thẳng: Học sinh cần tìm tọa độ giao điểm của hai đường thẳng bằng phương pháp giải hệ phương trình.
  • Ứng dụng hàm số bậc nhất vào giải quyết bài toán thực tế: Học sinh cần sử dụng hàm số bậc nhất để mô tả và giải quyết các bài toán liên quan đến các tình huống thực tế.

Phương pháp giải bài tập

Để giải bài 6 trang 64 Vở thực hành Toán 9 một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:

  1. Khái niệm hàm số bậc nhất: Hiểu rõ định nghĩa, các yếu tố của hàm số bậc nhất.
  2. Đồ thị hàm số bậc nhất: Biết cách vẽ đồ thị hàm số bậc nhất, xác định các điểm đặc biệt trên đồ thị.
  3. Hệ phương trình bậc nhất hai ẩn: Nắm vững phương pháp giải hệ phương trình bậc nhất hai ẩn.
  4. Ứng dụng hàm số bậc nhất: Biết cách sử dụng hàm số bậc nhất để mô tả và giải quyết các bài toán thực tế.

Ví dụ minh họa

Bài tập: Cho hàm số y = 2x - 1. Hãy vẽ đồ thị của hàm số này.

Lời giải:

  1. Xác định các điểm thuộc đồ thị: Chọn hai giá trị tùy ý của x, ví dụ x = 0 và x = 1. Thay vào hàm số để tìm giá trị tương ứng của y.
  2. Vẽ đồ thị: Vẽ hệ trục tọa độ Oxy. Đánh dấu các điểm đã tìm được trên hệ trục tọa độ. Nối các điểm này lại với nhau bằng một đường thẳng. Đường thẳng này chính là đồ thị của hàm số y = 2x - 1.

Lưu ý khi giải bài tập

  • Đọc kỹ đề bài để hiểu rõ yêu cầu của bài tập.
  • Sử dụng các kiến thức đã học một cách linh hoạt và sáng tạo.
  • Kiểm tra lại kết quả sau khi giải xong bài tập.
  • Tham khảo các tài liệu học tập khác để mở rộng kiến thức.

Bài tập tương tự

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các em có thể tham khảo các bài tập tương tự sau:

  • Bài 7 trang 64 Vở thực hành Toán 9
  • Bài 8 trang 64 Vở thực hành Toán 9
  • Các bài tập ôn tập về hàm số bậc nhất trong sách giáo khoa và các tài liệu tham khảo khác.

Kết luận

Bài 6 trang 64 Vở thực hành Toán 9 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất. Hy vọng với lời giải chi tiết và phương pháp giải bài tập hiệu quả mà giaitoan.edu.vn cung cấp, các em sẽ tự tin hơn trong việc học tập và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 9