Chào mừng các em học sinh đến với lời giải chi tiết bài 6 trang 67 Vở thực hành Toán 9 tập 2. Bài học này thuộc chương trình đại số, tập trung vào việc giải các bài toán liên quan đến hàm số bậc nhất.
Giaitoan.edu.vn cung cấp lời giải dễ hiểu, chi tiết từng bước, giúp các em nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.
Lương của các công nhân một nhà máy được cho trong bảng sau: a) Nêu các nhóm số liệu và tần số. Giải thích ý nghĩa cho một nhóm số liệu và tần số của nó. b) Vẽ biểu đồ tần số tương đối ghép nhóm dạng cột cho bảng thống kê trên.
Đề bài
Lương của các công nhân một nhà máy được cho trong bảng sau:
a) Nêu các nhóm số liệu và tần số. Giải thích ý nghĩa cho một nhóm số liệu và tần số của nó.
b) Vẽ biểu đồ tần số tương đối ghép nhóm dạng cột cho bảng thống kê trên.
Phương pháp giải - Xem chi tiết
Vẽ biểu đồ tần số tương đối dạng cột:
+ Tính tần số tương đối của các nhóm số liệu.
+ Vẽ biểu đồ tần số tương đối ghép nhóm dạng cột:
Bước 1: Vẽ trục đứng, trục ngang. Trên trục đứng xác định đơn vị độ dài phù hợp với các tần số tương đối. Trên trục ngang xác định các nhóm số liệu cần biểu diễn.
Bước 2: Dựng các hình cột (kề nhau) ứng với các nhóm dữ liệu, mỗi hình cột có chiều cao bằng tần số tương đối của nhóm số liệu.
Bước 3: Ghi chú giải cho các trục, các cột và tiêu đề cho biểu đồ.
Lời giải chi tiết
a) Các nhóm số liệu gồm \(\left[ {5;7} \right)\); \(\left[ {7;9} \right)\); \(\left[ {9;11} \right)\); \(\left[ {11;13} \right)\); \(\left[ {13;15} \right)\)với tần số tương ứng là 20; 50; 70; 40; 20. Nhóm \(\left[ {5;7} \right)\) với tần số là 20 nghĩa là có 20 công nhân nhà máy có mức lương từ 5 triệu đồng đến dưới 7 triệu đồng.
b) Tổng số công nhân là: \(20 + 50 + 70 + 40 + 20 = 200\) (công nhân)
Tần số tương đối của các nhóm lần lượt là:
\(\frac{{20}}{{200}}.100\% = 10\% ;\frac{{50}}{{200}}.100\% = 25\% ;\frac{{70}}{{200}}.100\% = 35\% ;\frac{{40}}{{200}}.100\% = 20\% ;\frac{{20}}{{200}}.100\% = 10\% \)
Ta có bảng tần số tương đối như sau:
Biểu đồ tần số tương đối ghép nhóm dạng cột:
Bài 6 trang 67 Vở thực hành Toán 9 tập 2 là một bài tập quan trọng trong chương trình học Toán 9, giúp học sinh củng cố kiến thức về hàm số bậc nhất và ứng dụng của nó trong việc giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh xác định hệ số góc, đường thẳng song song, đường thẳng vuông góc và tìm giao điểm của hai đường thẳng.
Bài 6 thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 6 trang 67 Vở thực hành Toán 9 tập 2, chúng tôi xin trình bày lời giải chi tiết cho từng câu hỏi:
Đề bài: (Ví dụ về đề bài câu a)
Lời giải: (Giải thích chi tiết từng bước giải câu a, bao gồm các bước biến đổi, áp dụng công thức và kết luận)
Đề bài: (Ví dụ về đề bài câu b)
Lời giải: (Giải thích chi tiết từng bước giải câu b, bao gồm các bước biến đổi, áp dụng công thức và kết luận)
Đề bài: (Ví dụ về đề bài câu c)
Lời giải: (Giải thích chi tiết từng bước giải câu c, bao gồm các bước biến đổi, áp dụng công thức và kết luận)
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập về hàm số bậc nhất, các em có thể tham khảo các bài tập tương tự sau:
Bài 6 trang 67 Vở thực hành Toán 9 tập 2 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất. Hy vọng với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, các em học sinh sẽ tự tin hơn trong việc giải quyết các bài toán tương tự.