Chào mừng các em học sinh đến với lời giải chi tiết bài 7 trang 61 Vở thực hành Toán 9. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu và hiệu quả nhất.
Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất trong môn Toán.
Rút gọn biểu thức: a) (left( {frac{{7 - sqrt 7 }}{{1 - sqrt 7 }} + sqrt 3 } right)left( {frac{{7 + sqrt 7 }}{{1 + sqrt 7 }} + sqrt 3 } right)); b) (frac{{28}}{3}sqrt {frac{{27}}{{16}}} - 3.sqrt {frac{{49}}{3}} - frac{9}{4}.sqrt {frac{{48}}{{243}}} ).
Đề bài
Rút gọn biểu thức:
a) \(\left( {\frac{{7 - \sqrt 7 }}{{1 - \sqrt 7 }} + \sqrt 3 } \right)\left( {\frac{{7 + \sqrt 7 }}{{1 + \sqrt 7 }} + \sqrt 3 } \right)\);
b) \(\frac{{28}}{3}\sqrt {\frac{{27}}{{16}}} - 3.\sqrt {\frac{{49}}{3}} - \frac{9}{4}.\sqrt {\frac{{48}}{{243}}} \).
Phương pháp giải - Xem chi tiết
Khi rút gọn biểu thức có chứa căn thức bậc hai, ta cần phối hợp các phép tính (cộng, trừ, nhân, chia) và các phép biến đổi đã học (đưa thừa số ra ngoài hoặc vào trong dấu căn; khử mẫu của biểu thức lấy căn, trục căn thức ở mẫu).
Lời giải chi tiết
a) Ta có: \(7 - \sqrt 7 = \sqrt 7 .\sqrt 7 - \sqrt 7 = \sqrt 7 \left( {\sqrt 7 - 1} \right)\) nên \(\frac{{7 - \sqrt 7 }}{{1 - \sqrt 7 }} = - \sqrt 7 \)
Tương tự, \(\frac{{7 + \sqrt 7 }}{{1 + \sqrt 7 }} = \sqrt 7 \). Do đó
\(\left( {\frac{{7 - \sqrt 7 }}{{1 - \sqrt 7 }} + \sqrt 3 } \right)\left( {\frac{{7 + \sqrt 7 }}{{1 + \sqrt 7 }} + \sqrt 3 } \right) \\= \left( { - \sqrt 7 + \sqrt 3 } \right)\left( {\sqrt 7 + \sqrt 3 } \right) \\= {\left( {\sqrt 3 } \right)^2} - {\left( {\sqrt 7 } \right)^2} = - 4\)
b) Áp dụng quy tắc khai căn một thương và đưa thừa số ra ngoài dấu căn ta có
\(\sqrt {\frac{{27}}{{16}}} = \frac{{3\sqrt 3 }}{4};\;\sqrt {\frac{{49}}{3}} = \frac{7}{{\sqrt 3 }};\;\sqrt {\frac{{48}}{{243}}} = \frac{{4\sqrt 3 }}{{9\sqrt 3 }} = \frac{4}{9}\).
Do đó
\(\frac{{28}}{3}\sqrt {\frac{{27}}{{16}}} - 3.\sqrt {\frac{{49}}{3}} - \frac{9}{4}.\sqrt {\frac{{48}}{{243}}} \\ = \frac{{28}}{3}.\frac{{3\sqrt 3 }}{4} - 3.\frac{7}{{\sqrt 3 }} - \frac{9}{4}.\frac{4}{9} = - 1\)
Bài 7 trang 61 Vở thực hành Toán 9 thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.
Bài 7 thường bao gồm các dạng bài tập sau:
Để giúp các em hiểu rõ hơn về cách giải bài 7 trang 61 Vở thực hành Toán 9, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập.
Cho hàm số y = (m-2)x + 3. Tìm giá trị của m để hàm số là hàm số bậc nhất đồng biến.
Lời giải:
Để hàm số y = (m-2)x + 3 là hàm số bậc nhất, thì m-2 ≠ 0, tức là m ≠ 2.
Để hàm số đồng biến, thì hệ số a = m-2 > 0, tức là m > 2.
Vậy, để hàm số là hàm số bậc nhất đồng biến, thì m > 2.
Vẽ đồ thị hàm số y = 2x - 1.
Lời giải:
Ta lập bảng giá trị:
x | y |
---|---|
0 | -1 |
1 | 1 |
Vẽ hệ trục tọa độ Oxy, đánh dấu hai điểm (0; -1) và (1; 1). Nối hai điểm này lại, ta được đồ thị hàm số y = 2x - 1.
Tìm tọa độ giao điểm của hai đường thẳng y = x + 2 và y = -x + 4.
Lời giải:
Ta giải hệ phương trình:
{ y = x + 2
y = -x + 4
Thay y = x + 2 vào phương trình thứ hai, ta được:
x + 2 = -x + 4
2x = 2
x = 1
Thay x = 1 vào phương trình y = x + 2, ta được:
y = 1 + 2 = 3
Vậy, tọa độ giao điểm của hai đường thẳng là (1; 3).
Hy vọng với lời giải chi tiết và những lưu ý trên, các em học sinh sẽ tự tin hơn khi giải bài 7 trang 61 Vở thực hành Toán 9. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!