Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trắc nghiệm Toán 9. Bài viết này tập trung vào việc giải các câu hỏi trang 11 Vở thực hành Toán 9, giúp các em học sinh nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi hiểu rằng việc giải các bài tập trắc nghiệm đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, dễ hiểu, kèm theo các giải thích rõ ràng để giúp các em hiểu rõ bản chất của từng bài toán.
Hệ phương trình (left{ begin{array}{l}frac{5}{3}x + y = - 2x - y = 3end{array} right.) A. có nghiệm là (left( {frac{3}{8};frac{{27}}{8}} right)). B. có nghiệm là (left( {frac{3}{8};frac{{ - 21}}{8}} right)). C. vô nghiệm. D. có nghiệm là (left( {frac{{ - 3}}{8};frac{{27}}{8}} right)).
Trả lời Câu 1 trang 11 Vở thực hành Toán 9
Hệ phương trình \(\left\{ \begin{array}{l}\frac{5}{3}x + y = - 2\\x - y = 3\end{array} \right.\)
A. có nghiệm là \(\left( {\frac{3}{8};\frac{{27}}{8}} \right)\).
B. có nghiệm là \(\left( {\frac{3}{8};\frac{{ - 21}}{8}} \right)\).
C. vô nghiệm.
D. có nghiệm là \(\left( {\frac{{ - 3}}{8};\frac{{27}}{8}} \right)\).
Phương pháp giải:
Sử dụng máy tính cầm tay để tìm nghiệm của hệ phương trình.
Lời giải chi tiết:
Sử dụng máy tính cầm tay, ta tìm được nghiệm của hệ phương trình \(\left\{ \begin{array}{l}\frac{5}{3}x + y = - 2\\x - y = 3\end{array} \right.\) là: \(\left( {\frac{3}{8};\frac{{ - 21}}{8}} \right)\).
Chọn B
Trả lời Câu 2 trang 11 Vở thực hành Toán 9
Hệ phương trình \(\left\{ \begin{array}{l} - 2,5x + y = 5\\0,5x - 1,5y = 0\end{array} \right.\)
A. có một nghiệm.
B. có hai nghiệm.
C. vô nghiệm.
D. có vô số nghiệm.
Phương pháp giải:
Sử dụng máy tính cầm tay để tìm nghiệm của hệ phương trình.
Lời giải chi tiết:
Sử dụng máy tính cầm tay, ta tìm được nghiệm của hệ phương trình \(\left\{ \begin{array}{l} - 2,5x + y = 5\\0,5x - 1,5y = 0\end{array} \right.\) là: \(\left( {\frac{{ - 30}}{{13}};\frac{{ - 10}}{{13}}} \right)\).
Do đó, hệ phương trình \(\left\{ \begin{array}{l} - 2,5x + y = 5\\0,5x - 1,5y = 0\end{array} \right.\) có một nghiệm.
Chọn A
Trả lời Câu 3 trang 11 Vở thực hành Toán 9
Đường thẳng \(y = ax + b\) đi qua hai điểm (2; -1) và (-4; -3). Khi đó
A. \(a = 1;b = - 3\).
B. \(a = \frac{1}{2};b = - 2\).
C. \(a = \frac{1}{3};b = - \frac{5}{3}\).
D. \(a = 0;b = - 3\).
Phương pháp giải:
+ Vì đường thẳng \(y = ax + b\) đi qua điểm (2; -1) nên \( - 1 = 2a + b\) (1).
+ Vì đường thẳng \(y = ax + b\) đi qua điểm (-4; -3) nên \( - 3 = - 4a + b\) (2).
+ Giải hệ phương trình \(\left\{ \begin{array}{l}2a + b = - 1\\ - 4a + b = - 3\end{array} \right.\) bằng phương pháp cộng đại số.
Lời giải chi tiết:
Vì đường thẳng \(y = ax + b\) đi qua điểm (2; -1) nên \( - 1 = 2a + b\) (1)
Vì đường thẳng \(y = ax + b\) đi qua điểm (-4; -3) nên \( - 3 = - 4a + b\) (2)
Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}2a + b = - 1\\ - 4a + b = - 3\end{array} \right.\)
Trừ từng vế của hai phương trình, ta được: \(6a = 2\), suy ra \(a = \frac{1}{3}\).
Thế \(a = \frac{1}{3}\) vào phương trình thứ nhất ta được: \(2.\frac{1}{3} + b = - 1\) hay \(\frac{2}{3} + b = - 1\), suy ra \(b = \frac{{ - 5}}{3}\).
Chọn C
Trả lời Câu 4 trang 11 Vở thực hành Toán 9
Với giá trị nào của m thì hệ phương trình \(\left\{ \begin{array}{l}3x - {m^2}y = 5\\mx + 5y = 2\end{array} \right.\) nhận (3; 1) là nghiệm?
A. Không có giá trị nào của m thỏa mãn.
B. \(m = 2\).
C. \(m = - 2\).
D. \(m = - 1\).
Phương pháp giải:
Thay nghiệm (3; 1) vào từng phương trình của hệ để tìm m, nếu giá trị m của hai phương trình bằng nhau thì đó là giá trị m cần tìm.
Lời giải chi tiết:
Vì (3; 1) là nghiệm của hệ phương trình đã cho nên \(\left\{ \begin{array}{l}3.3 - {m^2}.1 = 5\\3m + 5.1 = 2\end{array} \right.\) , suy ra \(\left\{ \begin{array}{l}{m^2} = 4\\3m = - 3\end{array} \right.\), suy ra \(\left\{ \begin{array}{l}m = \pm 2\\m = - 1\end{array} \right.\) (vô lí). Do đó, không có giá trị nào của m thỏa mãn.
Chọn A
Chọn phương án đúng trong mỗi câu sau:
Trả lời Câu 1 trang 11 Vở thực hành Toán 9
Hệ phương trình \(\left\{ \begin{array}{l}\frac{5}{3}x + y = - 2\\x - y = 3\end{array} \right.\)
A. có nghiệm là \(\left( {\frac{3}{8};\frac{{27}}{8}} \right)\).
B. có nghiệm là \(\left( {\frac{3}{8};\frac{{ - 21}}{8}} \right)\).
C. vô nghiệm.
D. có nghiệm là \(\left( {\frac{{ - 3}}{8};\frac{{27}}{8}} \right)\).
Phương pháp giải:
Sử dụng máy tính cầm tay để tìm nghiệm của hệ phương trình.
Lời giải chi tiết:
Sử dụng máy tính cầm tay, ta tìm được nghiệm của hệ phương trình \(\left\{ \begin{array}{l}\frac{5}{3}x + y = - 2\\x - y = 3\end{array} \right.\) là: \(\left( {\frac{3}{8};\frac{{ - 21}}{8}} \right)\).
Chọn B
Trả lời Câu 2 trang 11 Vở thực hành Toán 9
Hệ phương trình \(\left\{ \begin{array}{l} - 2,5x + y = 5\\0,5x - 1,5y = 0\end{array} \right.\)
A. có một nghiệm.
B. có hai nghiệm.
C. vô nghiệm.
D. có vô số nghiệm.
Phương pháp giải:
Sử dụng máy tính cầm tay để tìm nghiệm của hệ phương trình.
Lời giải chi tiết:
Sử dụng máy tính cầm tay, ta tìm được nghiệm của hệ phương trình \(\left\{ \begin{array}{l} - 2,5x + y = 5\\0,5x - 1,5y = 0\end{array} \right.\) là: \(\left( {\frac{{ - 30}}{{13}};\frac{{ - 10}}{{13}}} \right)\).
Do đó, hệ phương trình \(\left\{ \begin{array}{l} - 2,5x + y = 5\\0,5x - 1,5y = 0\end{array} \right.\) có một nghiệm.
Chọn A
Trả lời Câu 3 trang 11 Vở thực hành Toán 9
Đường thẳng \(y = ax + b\) đi qua hai điểm (2; -1) và (-4; -3). Khi đó
A. \(a = 1;b = - 3\).
B. \(a = \frac{1}{2};b = - 2\).
C. \(a = \frac{1}{3};b = - \frac{5}{3}\).
D. \(a = 0;b = - 3\).
Phương pháp giải:
+ Vì đường thẳng \(y = ax + b\) đi qua điểm (2; -1) nên \( - 1 = 2a + b\) (1).
+ Vì đường thẳng \(y = ax + b\) đi qua điểm (-4; -3) nên \( - 3 = - 4a + b\) (2).
+ Giải hệ phương trình \(\left\{ \begin{array}{l}2a + b = - 1\\ - 4a + b = - 3\end{array} \right.\) bằng phương pháp cộng đại số.
Lời giải chi tiết:
Vì đường thẳng \(y = ax + b\) đi qua điểm (2; -1) nên \( - 1 = 2a + b\) (1)
Vì đường thẳng \(y = ax + b\) đi qua điểm (-4; -3) nên \( - 3 = - 4a + b\) (2)
Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}2a + b = - 1\\ - 4a + b = - 3\end{array} \right.\)
Trừ từng vế của hai phương trình, ta được: \(6a = 2\), suy ra \(a = \frac{1}{3}\).
Thế \(a = \frac{1}{3}\) vào phương trình thứ nhất ta được: \(2.\frac{1}{3} + b = - 1\) hay \(\frac{2}{3} + b = - 1\), suy ra \(b = \frac{{ - 5}}{3}\).
Chọn C
Trả lời Câu 4 trang 11 Vở thực hành Toán 9
Với giá trị nào của m thì hệ phương trình \(\left\{ \begin{array}{l}3x - {m^2}y = 5\\mx + 5y = 2\end{array} \right.\) nhận (3; 1) là nghiệm?
A. Không có giá trị nào của m thỏa mãn.
B. \(m = 2\).
C. \(m = - 2\).
D. \(m = - 1\).
Phương pháp giải:
Thay nghiệm (3; 1) vào từng phương trình của hệ để tìm m, nếu giá trị m của hai phương trình bằng nhau thì đó là giá trị m cần tìm.
Lời giải chi tiết:
Vì (3; 1) là nghiệm của hệ phương trình đã cho nên \(\left\{ \begin{array}{l}3.3 - {m^2}.1 = 5\\3m + 5.1 = 2\end{array} \right.\) , suy ra \(\left\{ \begin{array}{l}{m^2} = 4\\3m = - 3\end{array} \right.\), suy ra \(\left\{ \begin{array}{l}m = \pm 2\\m = - 1\end{array} \right.\) (vô lí). Do đó, không có giá trị nào của m thỏa mãn.
Chọn A
Trang 11 Vở thực hành Toán 9 thường chứa các bài tập trắc nghiệm liên quan đến các kiến thức cơ bản về hàm số bậc nhất, đồ thị hàm số, và các ứng dụng của hàm số trong thực tế. Việc nắm vững kiến thức này là nền tảng quan trọng để học tốt các chương tiếp theo của môn Toán 9.
Các câu hỏi trắc nghiệm trang 11 Vở thực hành Toán 9 thường xoay quanh các dạng bài sau:
Để xác định hệ số a, b của hàm số y = 2x - 3, ta so sánh với dạng tổng quát y = ax + b. Từ đó, ta có a = 2 và b = -3.
Thay x = 1 vào phương trình hàm số y = -x + 5, ta được y = -1 + 5 = 4. Vậy, khi x = 1 thì y = 4.
Thay tọa độ điểm A(2; 1) vào phương trình hàm số y = 3x - 5, ta được 1 = 3 * 2 - 5 = 1. Vì phương trình đúng, nên điểm A(2; 1) thuộc đồ thị hàm số y = 3x - 5.
Để học tốt môn Toán 9, các em có thể tham khảo các tài liệu sau:
Việc giải các câu hỏi trắc nghiệm trang 11 Vở thực hành Toán 9 là một bước quan trọng trong quá trình học tập môn Toán 9. Hy vọng rằng với những hướng dẫn chi tiết và các mẹo giải nhanh mà chúng tôi đã cung cấp, các em sẽ tự tin hơn trong việc giải các bài tập trắc nghiệm và đạt kết quả tốt trong môn học này.