Chào mừng các em học sinh đến với lời giải chi tiết bài 1 trang 78 Vở thực hành Toán 9. Bài viết này sẽ cung cấp đáp án và hướng dẫn giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Giải tam giác ABC vuông tại A có (BC = a,AC = b,AB = c,) trong các trường hợp (góc làm tròn đến độ, cạnh làm tròn đến chữ số hàng đơn vị): a) (a = 21,b = 18); b) (b = 10,widehat C = {30^o}); c) (c = 5;b = 3).
Đề bài
Giải tam giác ABC vuông tại A có \(BC = a,AC = b,AB = c,\) trong các trường hợp (góc làm tròn đến độ, cạnh làm tròn đến chữ số hàng đơn vị):
a) \(a = 21,b = 18\);
b) \(b = 10,\widehat C = {30^o}\);
c) \(c = 5;b = 3\).
Phương pháp giải - Xem chi tiết
Trong tam giác vuông, mỗi cạnh góc vuông bằng cạnh huyền nhân với sin góc đối hoặc nhân với côsin góc kề.
Trong tam giác vuông, mỗi cạnh góc vuông bằng cạnh góc vuông kia nhân với tan góc đối hoặc nhân với côtang góc kề.
Lời giải chi tiết
a) Theo ĐL Pythagore, ta có: \({c^2} = {21^2} - {18^2} = 117\) nên \(c = 3\sqrt {13} \approx 11\).
Ta có: \(\sin B = \frac{b}{a} = \frac{6}{7}\), nên dùng MTCT ta có \(\widehat B \approx {59^o}\)
Do đó, \(\widehat C = {90^o} - \widehat B \approx {31^o}\)
b) Ta có: \(\widehat B = {90^o} - \widehat C = {60^o}\),
\(\cos C = \cos {30^o} = \frac{b}{a}\) nên \(a = \frac{b}{{\cos {{30}^o}}} = \frac{{10}}{{\cos {{30}^o}}} = \frac{{20\sqrt 3 }}{3} \approx 12\)
\(c = b.\tan C = 10.\tan {30^o} = 10.\frac{{\sqrt 3 }}{3} \approx 6\)
c) Ta có: \({a^2} = {b^2} + {c^2} = 34\) nên \(a = \sqrt {34} \approx 6\)
\(\tan B = \frac{b}{c} = \frac{3}{5}\), dùng MTCT tính được \(\widehat B \approx {31^o}\)
Do đó, \(\widehat C = {90^o} - \widehat B \approx {59^o}\)
Bài 1 trang 78 Vở thực hành Toán 9 thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập yêu cầu học sinh vận dụng các kiến thức đã học để xác định hệ số góc, đường thẳng song song, và các tính chất liên quan đến hàm số.
Bài 1 trang 78 Vở thực hành Toán 9 thường bao gồm các dạng bài tập sau:
Để giúp các em hiểu rõ hơn về cách giải bài tập, chúng ta sẽ đi vào phân tích từng câu hỏi cụ thể.
Cho hàm số y = (m-1)x + 3. Tìm giá trị của m để hàm số là hàm số bậc nhất.
Hướng dẫn giải:
Hàm số y = ax + b là hàm số bậc nhất khi và chỉ khi a ≠ 0. Trong trường hợp này, a = m - 1. Do đó, để hàm số là hàm số bậc nhất, ta cần có m - 1 ≠ 0, suy ra m ≠ 1.
Đáp án: m ≠ 1
Cho hai đường thẳng d1: y = 2x - 1 và d2: y = -x + 3. Xác định xem hai đường thẳng này có song song hay không.
Hướng dẫn giải:
Hai đường thẳng d1: y = a1x + b1 và d2: y = a2x + b2 song song khi và chỉ khi a1 = a2 và b1 ≠ b2. Trong trường hợp này, a1 = 2 và a2 = -1. Vì a1 ≠ a2, nên hai đường thẳng d1 và d2 không song song.
Đáp án: Hai đường thẳng không song song.
Để giải bài tập về hàm số bậc nhất một cách hiệu quả, các em cần lưu ý những điều sau:
Hàm số bậc nhất có rất nhiều ứng dụng trong thực tế, ví dụ như:
Bài 1 trang 78 Vở thực hành Toán 9 là một bài tập quan trọng giúp các em củng cố kiến thức về hàm số bậc nhất. Hy vọng với lời giải chi tiết và những lưu ý trên, các em sẽ tự tin hơn trong quá trình học tập và giải bài tập.
Để luyện tập thêm, các em có thể tham khảo các bài tập tương tự sau:
Các em có thể tham khảo thêm các tài liệu sau để hiểu rõ hơn về hàm số bậc nhất: