Chào mừng các em học sinh đến với lời giải chi tiết bài 3 trang 66 Vở thực hành Toán 9 tại giaitoan.edu.vn. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp các em tự tin hơn trong việc chinh phục môn Toán.
Giả sử lực F của gió khi thổi theo phương vuông góc với bề mặt cánh buồm của một con thuyền tỉ lệ thuận với bình phương tốc độ của gió, hệ số tỉ lệ là 30. Trong đó, lực F được tính bằng N (Newton) và tốc độ được tính bằng m/s. a) Khi tốc độ của gió là 10m/s thì lực F là bao nhiêu Newton? b) Nếu cánh buồm chỉ có thể chịu được một áp lực tối đa là 12 000N thì con thuyền đó có thể đi được trong gió với tốc độ gió tối đa là bao nhiêu?
Đề bài
Giả sử lực F của gió khi thổi theo phương vuông góc với bề mặt cánh buồm của một con thuyền tỉ lệ thuận với bình phương tốc độ của gió, hệ số tỉ lệ là 30. Trong đó, lực F được tính bằng N (Newton) và tốc độ được tính bằng m/s.
a) Khi tốc độ của gió là 10m/s thì lực F là bao nhiêu Newton?
b) Nếu cánh buồm chỉ có thể chịu được một áp lực tối đa là 12 000N thì con thuyền đó có thể đi được trong gió với tốc độ gió tối đa là bao nhiêu?
Phương pháp giải - Xem chi tiết
a) + Từ giả thiết F tỉ lệ thuận với bình phương tốc độ v của gió, hệ số tỉ lệ là 30 suy ra \(F = 30{v^2}\)
+ Thay \(v = 10\left( {m/s} \right)\) vào biểu thức \(F = 30{v^2}\) ta tính được F.
b) + Thay \(F = 12\;000\left( N \right)\) vào biểu thức \(F = 30{v^2}\) ta tính được v.
Lời giải chi tiết
a) Từ giả thiết F tỉ lệ thuận với bình phương tốc độ v của gió, hệ số tỉ lệ là 30 suy ra \(F = 30{v^2}\).
Nếu \(v = 10\left( {m/s} \right)\) thì \(F = 30{v^2} = {30.10^2} = 3\;000\left( N \right)\).
b) Nếu \(F = 12\;000\left( N \right)\) thì \(12\;000 = 30{v^2}\) hay \({v^2} = 400\), suy ra \(v = 20\left( {m/s} \right)\)
Vì vậy, nếu cánh buồm chỉ có thể chịu được một áp lực tối đa là 12 000N thì con thuyền đó có thể đi được trong gió với tốc độ gió tối đa là 20m/s.
Bài 3 trang 66 Vở thực hành Toán 9 thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.
Bài 3 thường bao gồm các dạng bài tập sau:
Để giải quyết bài 3 trang 66 Vở thực hành Toán 9 một cách hiệu quả, học sinh cần nắm vững các bước sau:
Ví dụ: Cho hàm số y = 2x - 1. Hãy tìm giá trị của y khi x = 3.
Giải:
Thay x = 3 vào hàm số y = 2x - 1, ta được:
y = 2 * 3 - 1 = 6 - 1 = 5
Vậy, khi x = 3 thì y = 5.
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập về hàm số bậc nhất, các em có thể tham khảo thêm các bài tập tương tự trong Vở thực hành Toán 9 và các tài liệu học tập khác. Ngoài ra, các em cũng có thể tìm kiếm các bài giảng online hoặc tham gia các khóa học Toán 9 để được hướng dẫn chi tiết hơn.
Để học tốt môn Toán 9, các em cần:
Bài 3 trang 66 Vở thực hành Toán 9 là một bài tập quan trọng giúp các em củng cố kiến thức về hàm số bậc nhất. Hy vọng rằng với những hướng dẫn chi tiết và ví dụ minh họa trên, các em sẽ tự tin hơn trong việc giải quyết bài tập này và đạt kết quả tốt trong môn Toán 9.