Logo Header
  1. Môn Toán
  2. Giải bài 9 trang 96 vở thực hành Toán 9

Giải bài 9 trang 96 vở thực hành Toán 9

Giải bài 9 trang 96 Vở thực hành Toán 9

Chào mừng các em học sinh đến với lời giải chi tiết bài 9 trang 96 Vở thực hành Toán 9. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu và hiệu quả nhất.

Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất trong môn Toán.

Cho tam giác ABC có (widehat {ABC} = {45^o}). Kẻ đường cao AH ((H in BC)). Biết (BH = 20,CH = 21) (H.4.49). a) Tính AB, AC. b) Tính góc C và góc A.

Đề bài

Cho tam giác ABC có \(\widehat {ABC} = {45^o}\). Kẻ đường cao AH (\(H \in BC\)). Biết \(BH = 20,CH = 21\) (H.4.49).

a) Tính AB, AC.

b) Tính góc C và góc A.

Giải bài 9 trang 96 vở thực hành Toán 9 1

Phương pháp giải - Xem chi tiếtGiải bài 9 trang 96 vở thực hành Toán 9 2

a) + Trong tam giác ABH có vuông tại H: \(\cos \widehat {ABH} = \frac{{BH}}{{AB}}\) nên tính được AB, \(\tan \widehat {ABH} = \frac{{AH}}{{BH}}\) nên tính được AH.

+ Trong tam giác AHC có vuông tại H, ta có \(A{C^2} = A{H^2} + H{C^2}\) nên tính được AC.

b) Trong giác AHC có vuông tại H, ta có: \(\sin C = \frac{{AH}}{{AC}}\) nên tính được góc C.

Trong tam giác ABC, ta có: \(\widehat {BAC} + \widehat B + \widehat C = {180^o}\) nên tính được góc BAC.

Lời giải chi tiết

a) Trong giác AHB vuông tại H, ta có

\(\cos \widehat {ABH} = \frac{{BH}}{{AB}}\) nên \(AB = \frac{{BH}}{{\cos \widehat {ABH}}} = \frac{{20}}{{\cos {{45}^o}}} \approx 28,28\)

\(\tan \widehat {ABH} = \frac{{AH}}{{BH}}\) nên \(AH = BH.\tan \widehat {ABH} = 20\tan {45^o} = 20\)

Trong giác AHC có vuông tại H, theo định lí Pythagore, ta có

\(A{C^2} = A{H^2} + H{C^2} = 841\) nên \(AC = 29\)

b) Trong giác AHC có vuông tại H, ta có

\(\sin C = \frac{{AH}}{{AC}} = \frac{{20}}{{29}}\), do đó \(\widehat C \approx {44^o}\)

Trong tam giác ABC, ta có \(\widehat {BAC} + \widehat B + \widehat C = {180^o}\), do đó \(\widehat A = {180^o} - \widehat B - \widehat C = {180^o} - {45^o} - {44^o} \approx {91^o}\)

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài 9 trang 96 vở thực hành Toán 9 đặc sắc thuộc chuyên mục giải bài tập toán 9 trên nền tảng toán học. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài 9 trang 96 Vở thực hành Toán 9: Tổng quan

Bài 9 trang 96 Vở thực hành Toán 9 thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.

Nội dung bài tập

Bài 9 trang 96 Vở thực hành Toán 9 thường bao gồm các dạng bài tập sau:

  • Xác định hàm số bậc nhất: Học sinh cần xác định các hệ số a, b trong hàm số y = ax + b.
  • Vẽ đồ thị hàm số bậc nhất: Học sinh cần vẽ đồ thị của hàm số dựa trên các điểm đã cho hoặc bằng cách sử dụng các hệ số a, b.
  • Tìm giao điểm của hai đường thẳng: Học sinh cần tìm tọa độ giao điểm của hai đường thẳng bằng phương pháp giải hệ phương trình.
  • Ứng dụng hàm số bậc nhất vào giải quyết bài toán thực tế: Học sinh cần vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán liên quan đến quãng đường, thời gian, tốc độ,...

Phương pháp giải bài tập

Để giải bài tập bài 9 trang 96 Vở thực hành Toán 9 hiệu quả, học sinh cần nắm vững các kiến thức sau:

  1. Khái niệm hàm số bậc nhất: Hàm số bậc nhất có dạng y = ax + b, trong đó a, b là các số thực và a ≠ 0.
  2. Đồ thị hàm số bậc nhất: Đồ thị của hàm số bậc nhất là một đường thẳng.
  3. Điều kiện để hai đường thẳng song song, vuông góc:
    • Hai đường thẳng y = a1x + b1 và y = a2x + b2 song song khi và chỉ khi a1 = a2 và b1 ≠ b2.
    • Hai đường thẳng y = a1x + b1 và y = a2x + b2 vuông góc khi và chỉ khi a1.a2 = -1.
  4. Phương pháp giải hệ phương trình: Học sinh có thể sử dụng phương pháp thế hoặc phương pháp cộng đại số để giải hệ phương trình.

Ví dụ minh họa

Bài tập: Cho hàm số y = 2x - 1. Hãy xác định hệ số a, b và vẽ đồ thị của hàm số.

Giải:

Hệ số a = 2, b = -1.

Để vẽ đồ thị của hàm số, ta cần tìm hai điểm thuộc đồ thị. Ví dụ, ta có thể chọn x = 0 thì y = -1, và x = 1 thì y = 1. Vậy ta có hai điểm A(0; -1) và B(1; 1). Nối hai điểm A và B, ta được đồ thị của hàm số y = 2x - 1.

Luyện tập thêm

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, học sinh có thể tham khảo thêm các bài tập tương tự trong sách giáo khoa, sách bài tập và các trang web học Toán online.

Lời khuyên

Để học Toán 9 hiệu quả, học sinh cần:

  • Nắm vững kiến thức cơ bản.
  • Luyện tập thường xuyên.
  • Tìm kiếm sự giúp đỡ khi gặp khó khăn.
  • Sử dụng các tài liệu học tập phù hợp.

Kết luận

Bài 9 trang 96 Vở thực hành Toán 9 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, các em học sinh sẽ giải bài tập một cách dễ dàng và hiệu quả.

Tài liệu, đề thi và đáp án Toán 9