Chào mừng các em học sinh đến với lời giải chi tiết bài 5 trang 64 Vở thực hành Toán 9 tại giaitoan.edu.vn. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu và hiệu quả nhất.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng cao, giúp các em nắm vững kiến thức và đạt kết quả tốt trong môn Toán.
Rút gọn và tính giá trị của biểu thức (sqrt[3]{{27{x^3} - 27{x^2} + 9x - 1}}) tại (x = 7).
Đề bài
Rút gọn và tính giá trị của biểu thức \(\sqrt[3]{{27{x^3} - 27{x^2} + 9x - 1}}\) tại \(x = 7\).
Phương pháp giải - Xem chi tiết
Ta có \({\left( {\sqrt[3]{A}} \right)^3} = \sqrt[3]{{{A^3}}} = A\) với A là một biểu thức đại số.
Lời giải chi tiết
Vì \(27{x^3} - 27{x^2} + 9x - 1 \)
\(= {\left( {3x} \right)^3} - 3.{\left( {3x} \right)^2}.1 + 3.3x{.1^2} - {1^3}\)
\(= {\left( {3x - 1} \right)^3}\) nên
\(\sqrt[3]{{27{x^3} - 27{x^2} + 9x - 1}} = \sqrt[3]{{{{\left( {3x - 1} \right)}^3}}} = 3x - 1\)
Giá trị căn thức tại \(x = 7\) là \(3.7 - 1 = 20\).
Bài 5 trang 64 Vở thực hành Toán 9 thuộc chương trình học Toán 9, tập trung vào việc vận dụng các kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh xác định hệ số góc, điểm thuộc đồ thị hàm số, và giải các phương trình, bất phương trình liên quan.
Bài 5 thường bao gồm các dạng bài tập sau:
Để giải bài 5 trang 64 Vở thực hành Toán 9 hiệu quả, các em cần nắm vững các kiến thức sau:
Ví dụ: Cho hàm số y = 2x - 3. Tìm tọa độ điểm A thuộc đồ thị hàm số khi x = 1.
Giải: Thay x = 1 vào phương trình hàm số, ta có: y = 2(1) - 3 = -1. Vậy tọa độ điểm A là (1; -1).
Để củng cố kiến thức và kỹ năng giải bài tập, các em có thể luyện tập thêm các bài tập tương tự trong Vở thực hành Toán 9 và các tài liệu tham khảo khác. Việc luyện tập thường xuyên sẽ giúp các em nắm vững kiến thức và tự tin hơn khi làm bài kiểm tra.
Các em có thể tham khảo thêm các tài liệu sau để học Toán 9 hiệu quả:
Bài 5 trang 64 Vở thực hành Toán 9 là một bài tập quan trọng giúp các em củng cố kiến thức về hàm số và rèn luyện kỹ năng giải toán. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, các em sẽ giải bài tập này một cách dễ dàng và hiệu quả. Chúc các em học tốt!