Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn giải bài 3 trang 113, 114 Vở thực hành Toán 9 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và kỹ năng giải toán.
Cho góc xOy với đường phân giác Ot và điểm A trên cạnh Ox, điểm B trên cạnh Oy sao cho (OA = OB). Đường thẳng qua A vuông góc với Ox cắt Ot tại M. Chứng minh rằng OA và OB là hai tiếp tuyến cắt nhau của đường tròn (M; MA).
Đề bài
Cho góc xOy với đường phân giác Ot và điểm A trên cạnh Ox, điểm B trên cạnh Oy sao cho \(OA = OB\). Đường thẳng qua A vuông góc với Ox cắt Ot tại M. Chứng minh rằng OA và OB là hai tiếp tuyến cắt nhau của đường tròn (M; MA).
Phương pháp giải - Xem chi tiết
+ Theo đề bài, ta có Ox vuông góc với MA tại A nên Ox là tiếp tuyến của (M) tại A.
+ Chứng minh \(\Delta OMA = \Delta OMB\left( {c.c.c} \right)\) nên \(\widehat {MBO} = \widehat {MAO} = {90^o}\).
+ Suy ra OB vuông góc với Oy tại B. Suy ra OB là tiếp tuyến của (M).
Lời giải chi tiết
(H.5.30)
Theo đề bài, ta có Ox vuông góc với MA tại A nên Ox là tiếp tuyến của (M) tại A.
Do Ot là tia phân giác của góc xOy và \(M \in Ot\) nên \(MA = MB\).
Hai tam giác OMA và OMB có: cạnh OM chung; \(MA = MB\); \(OA = OB\).
Do đó \(\Delta OMA = \Delta OMB\left( {c.c.c} \right)\).
Suy ra \(\widehat {MBO} = \widehat {MAO} = {90^o}\), tức là OB vuông góc với MB tại B.
Do vậy OB là tiếp tuyến của (M) (theo dấu hiệu nhận biết tiếp tuyến).
Bài 3 trang 113, 114 Vở thực hành Toán 9 thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.
Bài 3 bao gồm các dạng bài tập sau:
Hàm số có dạng y = ax + b. Để xác định a và b, ta cần tìm hai điểm thuộc đồ thị hàm số. Ví dụ, ta có thể chọn hai điểm A(0; 2) và B(1; 5). Thay tọa độ các điểm này vào phương trình hàm số, ta được:
2 = a * 0 + b => b = 2
5 = a * 1 + b => a = 5 - b = 5 - 2 = 3
Vậy, hàm số có dạng y = 3x + 2.
Để vẽ đồ thị hàm số y = 3x + 2, ta cần xác định hai điểm thuộc đồ thị. Ta có thể chọn điểm A(0; 2) và điểm B(1; 5) như trên. Vẽ đường thẳng đi qua hai điểm này, ta được đồ thị hàm số.
Để tìm tọa độ giao điểm của hai đường thẳng y = 3x + 2 và y = -x + 6, ta giải hệ phương trình:
{ y = 3x + 2y = -x + 6 }
Thay y = 3x + 2 vào phương trình thứ hai, ta được:
3x + 2 = -x + 6
4x = 4
x = 1
Thay x = 1 vào phương trình y = 3x + 2, ta được:
y = 3 * 1 + 2 = 5
Vậy, tọa độ giao điểm của hai đường thẳng là (1; 5).
Hàm số bậc nhất được ứng dụng rộng rãi trong nhiều lĩnh vực của đời sống, như:
Bài 3 trang 113, 114 Vở thực hành Toán 9 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất. Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập được cung cấp trong bài viết này, bạn sẽ tự tin hơn khi giải quyết các bài toán tương tự.
Giaitoan.edu.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán. Chúc bạn học tập tốt!