Bài 7 trang 124 Vở thực hành Toán 9 tập 2 là một bài tập quan trọng trong chương trình học Toán 9. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về hàm số bậc nhất và ứng dụng của nó vào giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 7 trang 124 Vở thực hành Toán 9 tập 2, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Một hộp đựng bóng bàn có dạng hình trụ chứa vừa khít ba quả bóng bàn có cùng bán kính R xếp theo chiều ngang như hình dưới đây. Gọi ({S_1}) là tổng diện tích của ba quả bóng bàn, ({S_2}) là diện tích xung quanh của vỏ hộp hình trụ. Tính tỉ số (frac{{{S_1}}}{{{S_2}}}).
Đề bài
Một hộp đựng bóng bàn có dạng hình trụ chứa vừa khít ba quả bóng bàn có cùng bán kính R xếp theo chiều ngang như hình dưới đây. Gọi \({S_1}\) là tổng diện tích của ba quả bóng bàn, \({S_2}\) là diện tích xung quanh của vỏ hộp hình trụ. Tính tỉ số \(\frac{{{S_1}}}{{{S_2}}}\).
Phương pháp giải - Xem chi tiết
+ Tổng diện tích ba quả bóng bàn \({S_1} = 3.4\pi {R^2}\).
+ Tính chiều cao hình hộp \(h = 3.2R = 6R\).
+ Tính diện tích xung quanh của vỏ hộp hình trụ: \({S_2} = 2\pi Rh\).
+ Tính tỉ số \(\frac{{{S_1}}}{{{S_2}}}\).
Lời giải chi tiết
Tổng diện tích của ba quả bóng bàn là
\({S_1} = 3.4\pi {R^2} = 12\pi {R^2}\left( {c{m^2}} \right)\).
Chiều cao của hộp hình trụ là: \(h = 3.2R = 6R\).
Diện tích xung quanh của vỏ hộp hình trụ là:
\({S_2} = 2\pi Rh = 2\pi R.6R = 12\pi {R^2}\left( {c{m^2}} \right)\)
Vì vậy \(\frac{{{S_1}}}{{{S_2}}} = \frac{{12\pi {R^2}}}{{12\pi {R^2}}} = 1\).
Bài 7 trang 124 Vở thực hành Toán 9 tập 2 thuộc chương Hàm số bậc nhất. Bài tập này thường liên quan đến việc xác định hàm số, tìm giao điểm của đồ thị hàm số, hoặc giải các bài toán ứng dụng thực tế sử dụng hàm số bậc nhất. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về hàm số bậc nhất, bao gồm:
Để cung cấp lời giải chính xác, cần biết nội dung cụ thể của bài tập. Tuy nhiên, dưới đây là một ví dụ về cách tiếp cận giải một bài tập tương tự:
Cho hàm số y = 2x - 1. Tìm tọa độ giao điểm của đồ thị hàm số với đường thẳng y = x + 2.
x + 2 = 2x - 1
=> x = 3
y = 3 + 2 = 5
Ngoài việc tìm giao điểm, bài 7 trang 124 Vở thực hành Toán 9 tập 2 còn có thể xuất hiện các dạng bài tập sau:
Để giải bài tập hàm số bậc nhất một cách nhanh chóng và chính xác, bạn có thể áp dụng một số mẹo sau:
Để học tốt môn Toán 9, bạn có thể tham khảo các tài liệu sau:
Bài 7 trang 124 Vở thực hành Toán 9 tập 2 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất. Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, các em học sinh sẽ tự tin hơn khi làm bài tập Toán 9.