Chào mừng các em học sinh đến với lời giải chi tiết bài 8 trang 52 Vở thực hành Toán 9 tại giaitoan.edu.vn. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp các em tự tin hơn trong quá trình học Toán 9.
Không dùng MTCT, chứng minh rằng: a) ({left( {2 - sqrt 5 } right)^2} = 9 - 4sqrt 5 ); b) (sqrt {9 - 4sqrt 5 } - sqrt 5 = - 2).
Đề bài
Không dùng MTCT, chứng minh rằng:
a) \({\left( {2 - \sqrt 5 } \right)^2} = 9 - 4\sqrt 5 \);
b) \(\sqrt {9 - 4\sqrt 5 } - \sqrt 5 = - 2\).
Phương pháp giải - Xem chi tiết
\(\sqrt {{A^2}} = \left| A \right|\) với mọi biểu thức A.
Lời giải chi tiết
a) Áp dụng hằng đẳng thức \({\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\) và tính chất \({\left( {\sqrt x } \right)^2} = x\left( {x \ge 0} \right)\)
Ta có:
\({\left( {2 - \sqrt 5 } \right)^2} = {2^2} - 2.2.\sqrt 5 + {\left( {\sqrt 5 } \right)^2}\)
\(= 4 - 4\sqrt 5 + 5 = 9 - 4\sqrt 5 \)
b) Sử dụng kết quả câu a, hằng đẳng thức \(\sqrt {{A^2}} = \left| A \right|\) và \(2 = \sqrt {{2^2}} = \sqrt 4 < \sqrt 5 \) ta có
\(\sqrt {9 - 4\sqrt 5 } - \sqrt 5 = \sqrt {{{\left( {2 - \sqrt 5 } \right)}^2}} - \sqrt 5 \\= \left| {2 - \sqrt 5 } \right| - \sqrt 5 = \sqrt 5 - 2 - \sqrt 5 = - 2\)
Bài 8 trang 52 Vở thực hành Toán 9 thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.
Bài 8 bao gồm các dạng bài tập sau:
Cho hàm số y = 2x + 3. Tìm y khi x = -1; x = 0; x = 2.
Lời giải:
Khi x = -1, y = 2*(-1) + 3 = 1.
Khi x = 0, y = 2*0 + 3 = 3.
Khi x = 2, y = 2*2 + 3 = 7.
Cho hàm số y = -x + 5. Tìm x khi y = 0; y = 2; y = -3.
Lời giải:
Khi y = 0, 0 = -x + 5 => x = 5.
Khi y = 2, 2 = -x + 5 => x = 3.
Khi y = -3, -3 = -x + 5 => x = 8.
Xác định hệ số a của hàm số y = ax + 1, biết rằng đồ thị của hàm số đi qua điểm A(1; 3).
Lời giải:
Vì đồ thị của hàm số đi qua điểm A(1; 3) nên ta có: 3 = a*1 + 1 => a = 2.
Tìm hệ số a của hàm số y = ax - 2, biết rằng khi x = 2 thì y = 4.
Lời giải:
Khi x = 2 và y = 4, ta có: 4 = a*2 - 2 => 2a = 6 => a = 3.
Để giải các bài tập về hàm số bậc nhất, các em cần nắm vững các kiến thức sau:
Để củng cố kiến thức, các em có thể tự giải thêm các bài tập tương tự trong sách giáo khoa và vở bài tập Toán 9. Ngoài ra, các em có thể tham khảo các bài giảng trực tuyến và các tài liệu học tập khác.
Hy vọng rằng với lời giải chi tiết và phương pháp giải bài tập được trình bày trong bài viết này, các em sẽ tự tin hơn trong việc giải bài 8 trang 52 Vở thực hành Toán 9 và các bài tập tương tự. Chúc các em học tập tốt!