Chào mừng các em học sinh đến với lời giải chi tiết bài 7 trang 111 Vở thực hành Toán 9 tại giaitoan.edu.vn. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, đồng hành cùng các em trên con đường chinh phục môn Toán.
Cho đường tròn (O), đường kính (AB = 4sqrt 3 cm). Điểm C thuộc đường tròn tâm O sao cho (widehat {AOC} = {60^o}). Tính diện tích hình viên phân giới hạn bởi dây AC và cung nhỏ AC.
Đề bài
Cho đường tròn (O), đường kính \(AB = 4\sqrt 3 cm\). Điểm C thuộc đường tròn tâm O sao cho \(\widehat {AOC} = {60^o}\). Tính diện tích hình viên phân giới hạn bởi dây AC và cung nhỏ AC.
Phương pháp giải - Xem chi tiết
Diện tích hình viên phân bằng diện tích hình quạt tròn ứng với cung AC trừ đi diện tích tam giác AOC.
Lời giải chi tiết
(H.5.26)
Diện tích hình quạt tròn AOC là: \({S_{AOC}} = \frac{{60}}{{360}}.\pi .{\left( {2\sqrt 3 } \right)^2} = 2\pi \left( {c{m^2}} \right)\).
Xét tam giác AOC có \(\widehat {AOC} = {60^o}\) và \(OA = OC\left( { = R} \right)\) nên tam giác AOC đều có độ dài cạnh là \(2\sqrt 3 \)cm
Gọi CH là đường cao của tam giác AOC. Khi đó, \(CH = CO.\sin {60^o} = 2\sqrt 3 .\frac{{\sqrt 3 }}{2} = 3\left( {cm} \right)\)
Diện tích tam giác AOC là: \({S_{AOC}} = \frac{1}{2}CH.AC = \frac{1}{2}.3.2\sqrt 3 = 3\sqrt 3 \left( {c{m^2}} \right)\)
Diện tích hình viên phân cần tính là: \(S = {S_{AOC}} - {S_{AOC}} = 2\pi - 3\sqrt 3 \left( {c{m^2}} \right)\)
Bài 7 trang 111 Vở thực hành Toán 9 thuộc chương trình học Toán 9, tập trung vào việc vận dụng các kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh xác định hệ số góc, điểm thuộc đồ thị hàm số, và giải các phương trình, bất phương trình liên quan.
Bài 7 thường bao gồm các dạng bài tập sau:
Để giải bài 7 trang 111 Vở thực hành Toán 9 một cách hiệu quả, các em cần nắm vững các kiến thức sau:
Ví dụ: Cho hàm số y = 2x - 3. Tìm tọa độ giao điểm của đồ thị hàm số với trục Ox.
Giải:
Để tìm giao điểm của đồ thị hàm số với trục Ox, ta cần giải phương trình y = 0:
2x - 3 = 0
=> 2x = 3
=> x = 1.5
Vậy tọa độ giao điểm của đồ thị hàm số với trục Ox là (1.5; 0).
Để củng cố kiến thức và kỹ năng giải bài tập về hàm số, các em có thể luyện tập thêm các bài tập tương tự trong Vở thực hành Toán 9 và các tài liệu tham khảo khác. Ngoài ra, các em cũng có thể tìm kiếm các bài giảng online hoặc tham gia các khóa học Toán 9 để được hướng dẫn chi tiết hơn.
Trong quá trình học tập, các em nên:
Bài 7 trang 111 Vở thực hành Toán 9 là một bài tập quan trọng giúp các em hiểu sâu hơn về hàm số và ứng dụng của nó trong thực tế. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, các em sẽ tự tin hơn trong việc giải bài tập này và đạt kết quả tốt trong môn Toán.