Chào mừng các em học sinh đến với lời giải chi tiết bài 7 trang 97 Vở thực hành Toán 9 tập 2 tại giaitoan.edu.vn. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, đồng hành cùng các em trên con đường chinh phục môn Toán.
Cho tam giác ABC là tam giác vuông tại đỉnh A và nội tiếp đường tròn (O) có bán kính 5cm. Biết rằng diện tích tam giác ABC bằng (24c{m^2}). Tính bán kính đường tròn nội tiếp của tam giác ABC.
Đề bài
Cho tam giác ABC là tam giác vuông tại đỉnh A và nội tiếp đường tròn (O) có bán kính 5cm. Biết rằng diện tích tam giác ABC bằng \(24c{m^2}\). Tính bán kính đường tròn nội tiếp của tam giác ABC.
Phương pháp giải - Xem chi tiết
+ Tính BC.
+ Tính được \(A{B^2} + A{C^2} = B{C^2}\), \(\frac{1}{2}.AB.AC\) nên tính được \({\left( {AB + AC} \right)^2}\), từ đó tính được \(AB + AC\).
+ Gọi I là tâm đường tròn nội tiếp tam giác ABC và r là bán kính đường tròn nội tiếp tam giác ABC. Khi đó, r là chiều cao hạ từ đỉnh I xuống các cạnh BC, CA, AB của các tam giác BIC, CIA, AIB. Do đó
\({S_{ABC}} = {S_{BIC}} + {S_{CIA}} + {S_{AIB}} = \frac{1}{2}BC.r.\frac{1}{2}CA.r + \frac{1}{2}AB.r = \frac{1}{2}\left( {AB + AC + BC} \right).r\), từ đó tính được r.
Lời giải chi tiết
Vì bán kính đường tròn ngoại tiếp tam giác vuông bằng nửa cạnh huyền của tam giác nên \(BC = 2.5 = 10\left( {cm} \right)\).
Theo định lí Pythagore vào tam giác ABC vuông tại A, ta có: \(A{B^2} + A{C^2} = B{C^2} = 100\left( {c{m^2}} \right)\).
Vì diện tích tam giác ABC bằng \(24c{m^2}\) nên:
\(\frac{1}{2}.AB.AC = 24\left( {c{m^2}} \right)\).
Từ đây suy ra
\({\left( {AB + AC} \right)^2} = A{B^2} + 2AB.AC + A{C^2} = 196\) hay \(AB + AC = 14cm\).
Gọi I là tâm đường tròn nội tiếp tam giác ABC và r là bán kính đường tròn nội tiếp tam giác ABC. Khi đó, r là chiều cao hạ từ đỉnh I xuống các cạnh BC, CA, AB của các tam giác BIC, CIA, AIB. Do đó
\({S_{ABC}} = {S_{BIC}} + {S_{CIA}} + {S_{AIB}}\)
\(= \frac{1}{2}BC.r.\frac{1}{2}CA.r + \frac{1}{2}AB.r \)
\(= \frac{1}{2}\left( {AB + AC + BC} \right).r\).
Suy ra \(24 = \frac{1}{2}\left( {10 + 14} \right)r\), hay \(r = 2cm\).
Bài 7 trang 97 Vở thực hành Toán 9 tập 2 thuộc chương trình học Toán 9, tập trung vào việc vận dụng các kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh xác định hệ số góc, điểm thuộc đồ thị hàm số, và giải các phương trình, bất phương trình liên quan.
Bài 7 thường bao gồm các dạng bài tập sau:
Để giải quyết hiệu quả bài 7 trang 97 Vở thực hành Toán 9 tập 2, các em cần nắm vững các kiến thức sau:
Ví dụ 1: Xác định hàm số bậc nhất có đồ thị đi qua hai điểm A(1; 2) và B(2; 5).
Giải:
Gọi hàm số bậc nhất cần tìm là y = ax + b. Thay tọa độ của hai điểm A và B vào phương trình, ta có hệ phương trình:
a + b = 2
2a + b = 5
Giải hệ phương trình, ta được a = 3 và b = -1. Vậy hàm số cần tìm là y = 3x - 1.
Để củng cố kiến thức và rèn luyện kỹ năng, các em có thể tự giải thêm các bài tập tương tự trong Vở thực hành Toán 9 tập 2 và các đề thi thử Toán 9.
Trong quá trình học tập, các em nên:
Bài 7 trang 97 Vở thực hành Toán 9 tập 2 là một bài tập quan trọng giúp các em hiểu sâu hơn về hàm số bậc nhất và hàm số bậc hai. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, các em sẽ tự tin hơn trong quá trình giải bài tập và đạt kết quả tốt trong môn Toán.