Chào mừng các em học sinh đến với lời giải chi tiết bài 7 trang 65 Vở thực hành Toán 9 tại giaitoan.edu.vn. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp các em tự tin hơn trong quá trình học Toán 9.
Sử dụng định nghĩa căn bậc ba, chứng minh rằng (sqrt[3]{{7 + 5sqrt 2 }} = sqrt 2 + 1).
Đề bài
Sử dụng định nghĩa căn bậc ba, chứng minh rằng \(\sqrt[3]{{7 + 5\sqrt 2 }} = \sqrt 2 + 1\).
Phương pháp giải - Xem chi tiết
Căn bậc ba của số thực a là số thực x thỏa mãn \({x^3} = a\) (kí hiệu là \(\sqrt[3]{a}\)).
Lời giải chi tiết
Theo định nghĩa, \(\sqrt[3]{{7 + 5\sqrt 2 }}\) là một số thực x thỏa mãn \({x^3} = 7 + 5\sqrt 2 \).
Vì vậy, để chứng minh \(\sqrt[3]{{7 + 5\sqrt 2 }} = \sqrt 2 + 1\) chỉ cần chứng tỏ \({\left( {\sqrt 2 + 1} \right)^3} = 7 + 5\sqrt 2 \)
Thật vậy áp dụng hằng đẳng thức \({\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\) ta có:
\({\left( {\sqrt 2 + 1} \right)^3} = {\left( {\sqrt 2 } \right)^3} + 3{\left( {\sqrt 2 } \right)^2} + 3\sqrt 2 + 1 \\= 2\sqrt 2 + 6 + 3\sqrt 2 + 1 = 7 + 5\sqrt 2 \)
Vậy \(\sqrt[3]{{7 + 5\sqrt 2 }} = \sqrt 2 + 1\).
Bài 7 trang 65 Vở thực hành Toán 9 thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.
Bài 7 thường bao gồm các dạng bài tập sau:
Để giúp các em hiểu rõ hơn về cách giải bài 7 trang 65 Vở thực hành Toán 9, chúng tôi sẽ trình bày lời giải chi tiết cho từng phần của bài tập.
Cho hàm số y = 2x - 3. Hãy xác định hệ số a và b của hàm số. Hàm số này có đồng biến hay nghịch biến?
Lời giải:
Hệ số a của hàm số là 2, hệ số b của hàm số là -3. Vì a = 2 > 0 nên hàm số đồng biến.
Vẽ đồ thị của hàm số y = -x + 1.
Lời giải:
Để vẽ đồ thị của hàm số y = -x + 1, ta cần xác định hai điểm thuộc đồ thị. Ví dụ, ta có thể chọn x = 0 thì y = 1, và x = 1 thì y = 0. Vẽ hai điểm (0; 1) và (1; 0) lên mặt phẳng tọa độ, sau đó nối chúng lại bằng một đường thẳng. Đường thẳng này chính là đồ thị của hàm số y = -x + 1.
Tìm tọa độ giao điểm của hai đường thẳng y = x + 2 và y = -2x + 5.
Lời giải:
Để tìm tọa độ giao điểm của hai đường thẳng, ta giải hệ phương trình:
{ y = x + 2 y = -2x + 5 }
Thay y = x + 2 vào phương trình y = -2x + 5, ta được:
x + 2 = -2x + 5
3x = 3
x = 1
Thay x = 1 vào phương trình y = x + 2, ta được:
y = 1 + 2 = 3
Vậy tọa độ giao điểm của hai đường thẳng là (1; 3).
Ngoài Vở thực hành Toán 9, các em có thể tham khảo thêm các tài liệu sau để học tốt hơn về hàm số bậc nhất:
Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, các em sẽ tự tin hơn khi giải bài 7 trang 65 Vở thực hành Toán 9 và các bài tập tương tự. Chúc các em học tốt!