Chào mừng các em học sinh đến với lời giải chi tiết bài 5 trang 9 Vở thực hành Toán 9. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu và hiệu quả nhất.
Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất trong môn Toán.
Cho hệ phương trình bậc nhất hai ẩn (left{ begin{array}{l}3x + 2y = 1\x - 3y = - 7end{array} right.). Chứng tỏ rằng hệ phương trình đã cho có một nghiệm là (left( { - 1;2} right)).
Đề bài
Cho hệ phương trình bậc nhất hai ẩn \(\left\{ \begin{array}{l}3x + 2y = 1\\x - 3y = - 7\end{array} \right.\). Chứng tỏ rằng hệ phương trình đã cho có một nghiệm là \(\left( { - 1;2} \right)\).
Phương pháp giải - Xem chi tiết
Mỗi cặp số \(\left( {{x_0};{y_0}} \right)\) được gọi là một nghiệm của hệ \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\) (*) nếu nó đồng thời là nghiệm của cả hai phương trình của hệ (*).
Lời giải chi tiết
Ta thấy khi \(x = - 1\) và \(y = 2\) thì:
\(3x + 2y = 3.\left( { - 1} \right) + 2.2 = 1\) nên cặp số \(\left( { - 1;2} \right)\) là nghiệm của phương trình \(3x + 2y = 1\).
\(x - 3y = \left( { - 1} \right) - 3.2 = - 7\) nên cặp số \(\left( { - 1;2} \right)\) là nghiệm của phương trình \(x - 3y = - 7\).
Vậy hệ phương trình đã cho có một nghiệm là \(\left( { - 1;2} \right)\).
Bài 5 trang 9 Vở thực hành Toán 9 thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về các phép biến đổi đại số, đặc biệt là các biểu thức chứa căn thức bậc hai. Việc nắm vững kiến thức này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.
Bài 5 trang 9 Vở thực hành Toán 9 thường bao gồm các dạng bài tập sau:
Để giải quyết các bài tập trong bài 5 trang 9 Vở thực hành Toán 9 một cách hiệu quả, học sinh cần nắm vững các phương pháp sau:
Ví dụ 1: Rút gọn biểu thức √(25x²) - 3x (với x ≥ 0)
Giải:
√(25x²) - 3x = √(5²x²) - 3x = 5x - 3x = 2x
Ví dụ 2: Tính giá trị của biểu thức √(16) + √(9) - √(4)
Giải:
√(16) + √(9) - √(4) = 4 + 3 - 2 = 5
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các em có thể tham khảo thêm các bài tập tương tự trong Vở thực hành Toán 9 và các tài liệu học tập khác. Ngoài ra, các em cũng có thể tìm kiếm các bài giảng trực tuyến hoặc tham gia các khóa học Toán 9 để được hướng dẫn chi tiết hơn.
Để học Toán 9 hiệu quả, các em cần:
Bài 5 trang 9 Vở thực hành Toán 9 là một bài tập quan trọng giúp các em củng cố kiến thức về các phép biến đổi đại số và căn thức bậc hai. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trong bài viết này, các em sẽ tự tin giải quyết các bài tập tương tự và đạt kết quả tốt trong môn Toán.