Chào mừng các em học sinh đến với lời giải chi tiết bài 2 trang 20 Vở thực hành Toán 9. Bài viết này sẽ cung cấp đáp án và hướng dẫn giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Điểm số trung bình của một vận động viên bắn súng sau 100 lần bắn là 8,69 điểm. Kết quả cụ thể được ghi trong bảng sau, trong đó có hai ô bị mờ không đọc được (đánh dấu “?”): Em hãy tìm lại các số bị mờ trong hai ô đó.
Đề bài
Điểm số trung bình của một vận động viên bắn súng sau 100 lần bắn là 8,69 điểm. Kết quả cụ thể được ghi trong bảng sau, trong đó có hai ô bị mờ không đọc được (đánh dấu “?”):
Em hãy tìm lại các số bị mờ trong hai ô đó.
Phương pháp giải - Xem chi tiết
Các bước giải một bài toán bằng cách lập hệ phương trình:
Bước 1. Lập hệ phương trình:
- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.
- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.
- Lập hệ phương trình biểu thị mối quan hệ giữa các đại lượng.
Bước 2. Giải hệ phương trình.
Bước 3. Trả lời: Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận.
Lời giải chi tiết
Vận động viên bắn súng 100 lần nên ta có phương trình \(25 + 42 + x + 15 + y = 100\) hay \(x + y = 18\) (1).
Điểm số trung bình là 8,69 điểm nên \(\left( {10.25 + 9.42 + 8x + 7.15 + 6y} \right):100 = 8,69\) hay \(8x + 6y = 136\) (2).
Từ (1) và (2), ta có hệ phương trình \(\left\{ \begin{array}{l}x + y = 18\\8x + 6y = 136\end{array} \right.\).
Nhân hai vế của phương trình thứ nhất với 6 ta được hệ \(\left\{ \begin{array}{l}6x + 6y = 108\\8x + 6y = 136\end{array} \right.\)
Trừ từng vế hai phương trình của hệ mới ta được \(2x = 28\), suy ra \(x = 14\).
Thay \(x = 14\) vào phương trình thứ nhất của hệ ban đầu ta được: \(14 + y = 18\), suy ra \(y = 4\).
Vậy ở cột ứng với 8 điểm là số 14 và ở cột ứng với 6 điểm là số 4.
Bài 2 trang 20 Vở thực hành Toán 9 thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để xác định hệ số góc, phương trình đường thẳng và giải các bài toán liên quan đến hàm số.
Bài 2 bao gồm một số câu hỏi và bài tập nhỏ, yêu cầu học sinh:
Để xác định hệ số góc của đường thẳng, ta cần đưa phương trình đường thẳng về dạng y = ax + b, trong đó a là hệ số góc. Ví dụ, nếu phương trình đường thẳng là 2x + 3y = 6, ta có thể viết lại thành y = (-2/3)x + 2. Vậy hệ số góc của đường thẳng này là -2/3.
Để viết phương trình đường thẳng khi biết hệ số góc và một điểm thuộc đường thẳng, ta sử dụng công thức y - y0 = a(x - x0), trong đó (x0, y0) là tọa độ của điểm thuộc đường thẳng và a là hệ số góc. Ví dụ, nếu hệ số góc là 2 và đường thẳng đi qua điểm (1, 3), ta có phương trình đường thẳng là y - 3 = 2(x - 1), hay y = 2x + 1.
Để tìm giao điểm của hai đường thẳng, ta giải hệ phương trình gồm phương trình của hai đường thẳng đó. Ví dụ, nếu hai đường thẳng là y = x + 1 và y = -x + 3, ta giải hệ phương trình:
x + 1 = -x + 3
2x = 2
x = 1
Thay x = 1 vào phương trình y = x + 1, ta được y = 2. Vậy giao điểm của hai đường thẳng là (1, 2).
Bài toán: Tìm hệ số góc của đường thẳng đi qua hai điểm A(1, 2) và B(3, 6).
Giải: Hệ số góc của đường thẳng đi qua hai điểm A(x1, y1) và B(x2, y2) được tính theo công thức:
a = (y2 - y1) / (x2 - x1)
Trong trường hợp này, x1 = 1, y1 = 2, x2 = 3, y2 = 6. Vậy hệ số góc của đường thẳng là:
a = (6 - 2) / (3 - 1) = 4 / 2 = 2
Ngoài Vở thực hành Toán 9, các em có thể tham khảo thêm sách giáo khoa Toán 9, các bài giảng trực tuyến và các trang web học toán uy tín để nắm vững kiến thức và kỹ năng giải toán.
Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trong bài viết này, các em học sinh sẽ tự tin hơn khi giải bài 2 trang 20 Vở thực hành Toán 9 và đạt kết quả tốt trong môn học. Chúc các em học tập tốt!