Chào mừng các em học sinh đến với lời giải chi tiết bài 5 trang 36 Vở thực hành Toán 9 tập 2. Bài học này thuộc chương trình đại số, tập trung vào việc giải các bài toán liên quan đến hàm số bậc nhất.
Giaitoan.edu.vn cung cấp lời giải dễ hiểu, chi tiết từng bước, giúp các em nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.
Tìm hai số u và v, biết: a) (u + v = 13) và (uv = 40); b) (u - v = 4) và (uv = 77).
Đề bài
Tìm hai số u và v, biết:
a) \(u + v = 13\) và \(uv = 40\);
b) \(u - v = 4\) và \(uv = 77\).
Phương pháp giải - Xem chi tiết
a) + Hai u và v là nghiệm của phương trình \({x^2} - Sx + P = 0\) (điều kiện \({S^2} - 4P \ge 0\)).
+ Tính nghiệm của phương trình dựa vào công thức nghiệm (hoặc công thức nghiệm thu gọn).
b) + Từ \(u - v = 4\) ta có: \(u = 4 + v\).
+ Thay \(u = 4 + v\) vào phương trình \(uv = 77\) được phương trình \(\left( {u + v} \right)v = 77\) hay \({v^2} + 4v - 77 = 0\)
+ Tính v của phương trình dựa vào công thức nghiệm thu gọn, từ đó tính được u.
Lời giải chi tiết
a) Hai số cần tìm là nghiệm của phương trình \({x^2} - 13x + 40 = 0\).
Ta có: \(\Delta = {\left( { - 13} \right)^2} - 4.40 = 9 > 0;\sqrt \Delta = 3\).
Suy ra phương trình có hai nghiệm: \({x_1} = \frac{{13 + 3}}{2} = 8;{x_2} = \frac{{13 - 3}}{2} = 5\).
Vậy hai số cần tìm là 5 và 8.
b) Từ \(u - v = 4\) ta có: \(u = 4 + v\).
Thay \(u = 4 + v\) vào phương trình \(uv = 77\) ta nhận được phương trình
\(\left( {4 + v} \right)v = 77\), hay \({v^2} + 4v - 77 = 0\).
Ta có: \(\Delta ' = {\left( { - 2} \right)^2} - 1.\left( { - 77} \right) = 81 > 0,\sqrt \Delta = 9\).
Suy ra phương trình có hai nghiệm: \({v_1} = 7;{v_2} = - 11\).
Vậy cặp số (u; v) cần tìm là \(\left( {11;7} \right)\) hoặc \(\left( { - 7; - 11} \right)\).
Bài 5 trang 36 Vở thực hành Toán 9 tập 2 là một bài tập quan trọng trong chương trình học Toán 9, tập trung vào việc vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm như hệ số góc, đường thẳng song song, đường thẳng cắt nhau và cách xác định phương trình đường thẳng.
Bài 5 thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 5 trang 36, chúng tôi xin trình bày lời giải chi tiết cho từng câu hỏi:
Đề bài: (Ví dụ: Cho hàm số y = 2x + 1. Tìm hệ số góc của hàm số.)
Lời giải: Hệ số góc của hàm số y = 2x + 1 là 2.
Đề bài: (Ví dụ: Tìm phương trình đường thẳng đi qua điểm A(1; 2) và có hệ số góc là -1.)
Lời giải: Phương trình đường thẳng có dạng y = -x + b. Thay tọa độ điểm A(1; 2) vào phương trình, ta được 2 = -1 + b, suy ra b = 3. Vậy phương trình đường thẳng là y = -x + 3.
Đề bài: (Ví dụ: Cho hai đường thẳng y = 3x - 1 và y = -3x + 2. Xác định vị trí tương đối của hai đường thẳng này.)
Lời giải: Vì hệ số góc của hai đường thẳng khác nhau (3 ≠ -3), nên hai đường thẳng cắt nhau.
Để giải tốt các bài tập về hàm số bậc nhất, các em cần lưu ý những điều sau:
Để củng cố kiến thức và rèn luyện kỹ năng giải toán, các em có thể tham khảo thêm các bài tập tương tự sau:
Bài 5 trang 36 Vở thực hành Toán 9 tập 2 là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về hàm số bậc nhất. Hy vọng với lời giải chi tiết và các mẹo giải toán mà chúng tôi đã cung cấp, các em sẽ tự tin hơn khi giải quyết các bài tập tương tự.