Chào mừng các em học sinh đến với lời giải chi tiết bài 7 trang 89, 90 Vở thực hành Toán 9 tập 2. Bài học này thuộc chương trình đại số, tập trung vào việc giải các bài toán liên quan đến hàm số bậc nhất.
Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp đáp án chính xác, dễ hiểu và phương pháp giải bài tập hiệu quả.
Cho các điểm A, B, C, D trên đường tròn (O) như hình bên. Biết rằng CD là đường kính của (O) và (widehat {BOC} = {120^o}), hãy tính số đo các góc CAD và CDB.
Đề bài
Cho các điểm A, B, C, D trên đường tròn (O) như hình bên. Biết rằng CD là đường kính của (O) và \(\widehat {BOC} = {120^o}\), hãy tính số đo các góc CAD và CDB.
Phương pháp giải - Xem chi tiết
Xét trong đường tròn (O), ta có:
- Góc nội tiếp CDB và góc ở tâm BOC cùng chắn cung nhỏ BC nên \(\widehat {CDB} = \frac{1}{2}\widehat {BOC}\);
- Vì CD là đường kính nên góc nội tiếp CAD chắn nửa đường tròn (O) nên tính được góc CAD.
Lời giải chi tiết
Xét trong đường tròn (O), ta có:
- Góc nội tiếp CDB và góc ở tâm BOC cùng chắn cung nhỏ BC nên \(\widehat {CDB} = \frac{1}{2}\widehat {BOC} = {60^o}\);
- Vì CD là đường kính nên góc nội tiếp CAD chắn nửa đường tròn (O) và do đó: \(\widehat {CAD} = {90^o}\).
Bài 7 trong Vở thực hành Toán 9 tập 2 tập trung vào việc vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế. Các bài tập thường yêu cầu học sinh xác định hệ số góc, đường thẳng song song, đường thẳng vuông góc và ứng dụng vào việc tìm phương trình đường thẳng.
Bài 7 bao gồm các dạng bài tập sau:
Đề bài: Xác định hệ số góc của các đường thẳng sau: a) y = 2x - 3; b) y = -x + 5; c) y = 0,5x + 1.
Giải:
Đề bài: Tìm phương trình đường thẳng đi qua hai điểm A(1; 2) và B(3; 4).
Giải:
Bước 1: Tính hệ số góc m của đường thẳng AB: m = (yB - yA) / (xB - xA) = (4 - 2) / (3 - 1) = 1.
Bước 2: Sử dụng công thức phương trình đường thẳng đi qua điểm A(xA; yA) với hệ số góc m: y - yA = m(x - xA). Thay số, ta có: y - 2 = 1(x - 1) => y = x + 1.
Vậy phương trình đường thẳng đi qua hai điểm A(1; 2) và B(3; 4) là y = x + 1.
Ngoài Vở thực hành Toán 9 tập 2, các em có thể tham khảo thêm:
Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trên, các em học sinh sẽ hiểu rõ hơn về bài 7 trang 89, 90 Vở thực hành Toán 9 tập 2 và tự tin giải các bài tập tương tự. Chúc các em học tập tốt!