Chào mừng các em học sinh đến với lời giải chi tiết bài 9 trang 89 Vở thực hành Toán 9. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu và hiệu quả nhất.
Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất trong môn Toán.
Cho tam giác ABC vuông ở A và BD là tia phân giác góc B. Biết (widehat C = {42^o},AB = 22), tính độ dài BD, AD, DC (làm tròn đến chữ số thập phân thứ nhất).
Đề bài
Cho tam giác ABC vuông ở A và BD là tia phân giác góc B. Biết \(\widehat C = {42^o},AB = 22\), tính độ dài BD, AD, DC (làm tròn đến chữ số thập phân thứ nhất).
Phương pháp giải - Xem chi tiết
+ Tam giác ABC vuông tại A nên \(\widehat B = {90^o} - \widehat C\)
+ Vì BD là tia phân giác góc B nên \(\widehat {ABD} = \frac{{\widehat {ABC}}}{2}\)
+ Tam giác ABD vuông ở A, ta có: \(\cos \widehat {ABD} = \frac{{AB}}{{BD}}\) tính được BD, \(\tan \widehat {ABD} = \frac{{AD}}{{AB}}\) tính được AD
+ Tam giác ABC vuông tại A nên\(\tan C = \frac{{AB}}{{AC}}\), tính được AC.
+ Từ đó, \(DC = AC - AD\)
Lời giải chi tiết
(H.4.34)
Tam giác ABC vuông ở A nên \(\widehat B = {90^o} - \widehat C = {48^o}\)
Vì BD là tia phân giác góc B nên
\(\widehat {ABD} = \frac{{\widehat {ABC}}}{2} = \frac{{{{48}^o}}}{2} = {24^o}\)
Tam giác ABD vuông ở A, ta có:
\(\cos \widehat {ABD} = \frac{{AB}}{{BD}}\)
nên \(BD = \frac{{AB}}{{\cos \widehat {ABD}}} = \frac{{22}}{{\cos {{24}^o}}} \approx 24,1\)
\(\tan \widehat {ABD} = \frac{{AD}}{{AB}}\)
nên \(AD = AB.\tan \widehat {ABD} = 22.\tan {24^o} \approx 9,8\)
Ta có \(\tan C = \frac{{AB}}{{AC}}\)
nên \(AC = \frac{{AB}}{{\tan C}} = \frac{{22}}{{\tan {{42}^o}}} \approx \frac{{22}}{{0,9}} \approx 24,4\)
Từ đó, \(DC = AC - AD = 24,4 - 9,8 = 14,6\)
Bài 9 trang 89 Vở thực hành Toán 9 thuộc chương trình học Toán 9, tập trung vào việc vận dụng các kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh xác định hệ số góc, điểm thuộc đồ thị hàm số, và giải các phương trình, bất phương trình liên quan.
Bài 9 thường bao gồm các dạng bài tập sau:
Để giải bài 9 trang 89 Vở thực hành Toán 9 hiệu quả, các em cần nắm vững các kiến thức sau:
Ví dụ: Cho hàm số y = 2x + 1. Hãy xác định hệ số góc và tung độ gốc của hàm số. Kiểm tra xem điểm A(1, 3) có thuộc đồ thị của hàm số hay không.
Giải:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các em có thể tham khảo thêm các bài tập tương tự trong Vở thực hành Toán 9 và các tài liệu học tập khác. Ngoài ra, các em cũng có thể tìm kiếm các bài giảng trực tuyến hoặc tham gia các khóa học Toán 9 để được hướng dẫn chi tiết hơn.
Trong quá trình học tập, các em nên:
Bài 9 trang 89 Vở thực hành Toán 9 là một bài tập quan trọng giúp các em củng cố kiến thức về hàm số và rèn luyện kỹ năng giải bài tập. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, các em sẽ giải bài tập này một cách dễ dàng và hiệu quả.